DNA-Reparatur

Schematische Übersicht
Übergeordnet
DNA-Metabolismus
Untergeordnet
Einzelstrangbruch-Reparatur
Doppelstrangbruch-Reparatur
Postreplikations-Reparatur
Virale DNA-Reparatur
mitochondrielle DNA-Reparatur
Pyrimidindimer-Reparatur
Basen-Exzisionsreparatur
Nukleotid-Exzisionsreparatur
Gene Ontology
QuickGO

Durch Mechanismen der DNA-Reparatur (Desoxyribonukleinsäure-Reparatur) können Zellen DNA-Schäden beseitigen. Solche Schäden in der DNA können spontan im Verlauf der DNA-Replikation oder durch die Einwirkung mutagener Substanzen, extremer Wärme oder ionisierender Strahlung verursacht werden.

DNA-Schäden können dazu führen, dass die Replikation der DNA für die Mitose falsch erfolgt, Proteine nicht mehr bzw. falsch synthetisiert oder wichtige Chromosomenbereiche nach Doppelstrangbrüchen abgespalten werden.

Bringen die komplexen Reparaturmechanismen der Zelle keinen Erfolg, so sammeln sich in wachsenden und ruhenden somatischen Zellen so viele Fehler an, dass die normalen Zellfunktionen gestört sind. In einer Keimzelle wären die Tochterzellen nicht mehr lebensfähig, was zu einer Inaktivierung der Zelllinie führt: die Zelle bzw. die zweite bis dritte nachfolgende Generation verliert ihre Teilungsfähigkeit und stirbt. Im Zuge der Zellzykluskontrolle können Kontrollproteine eine Zelle bzw. deren DNA als defekt erkennen und einen Zyklusarrest in der G0-Phase (Zellseneszenz) oder den programmierten Zelltod (Apoptose) einleiten.[1] Nichtreparierte DNA-Schäden in bestimmten Genen (Onkogene, Tumorsuppressorgene) können zu Krebs führen.

Einzelne DNA-Reparaturenzyme konnten inzwischen mit PAL-Mikroskopie bei ihrer Arbeit in einem Bakterium verfolgt und die entsprechenden Parameter bestimmt werden. So dauert beispielsweise in E. coli eine Basenexzisionsreparatur gut zwei Sekunden.[2] Für ihre Arbeiten zur DNA-Reparatur erhielten Tomas Lindahl, Paul Modrich und Aziz Sancar 2015 den Nobelpreis für Chemie.[3][4]

  1. C. R. Bartram: Genetische Grundlagen der Kanzerogenese. In: W. Hiddemann, C. R. Bartram (Hrsg.): Die Onkologie. Teil 1, Ausgabe 2, Verlag Springer, 2009, ISBN 3-540-79724-6, S. 118–127 (eingeschränkte Vorschau in der Google-Buchsuche).
  2. S. Uphoff, R. Reyes-Lamothe u. a.: Single-molecule DNA repair in live bacteria. In: Proceedings of the National Academy of Sciences. Band 110, Nummer 20, Mai 2013, S. 8063–8068, doi:10.1073/pnas.1301804110. PMID 23630273. PMC 3657774 (freier Volltext).
  3. William J. Broad: Nobel Prize in Chemistry Awarded to Tomas Lindahl, Paul Modrich and Aziz Sancar for DNA Studies In: The New York Times, 7. Oktober 2015  Vorlage:Cite news: Der Parameter language wurde bei wahrscheinlich fremdsprachiger Quelle nicht angegeben.
  4. Staff: The Nobel Prize in Chemistry 2015 – DNA repair – providing chemical stability for life In: Nobel Prize, 7. Oktober 2015  Vorlage:Cite news: Der Parameter language wurde bei wahrscheinlich fremdsprachiger Quelle nicht angegeben.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Tubidy