PPARGC1A

PPARGC1A
PDBに登録されている構造
PDBオルソログ検索: RCSB PDBe PDBj
PDBのIDコード一覧

1XB7, 3B1M, 3CS8, 3D24, 3U9Q, 3V9T, 3V9V, 4QJR, 4QK4

識別子
記号PPARGC1A, LEM6, PGC-1(alpha), PGC-1v, PGC1, PGC1A, PPARGC1, PGC-1alpha, PPARG coactivator 1 alpha, PGC-1α
外部IDOMIM: 604517 MGI: 1342774 HomoloGene: 7485 GeneCards: PPARGC1A
遺伝子の位置 (マウス)
5番染色体 (マウス)
染色体5番染色体 (マウス)[1]
5番染色体 (マウス)
PPARGC1A遺伝子の位置
PPARGC1A遺伝子の位置
バンドデータ無し開始点51,611,592 bp[1]
終点51,725,068 bp[1]
RNA発現パターン
さらなる参照発現データ
遺伝子オントロジー
分子機能 promoter-specific chromatin binding
転写因子結合
クロマチン結合
血漿タンパク結合
nuclear receptor binding
核酸結合
DNA結合
sequence-specific DNA binding
transcription coactivator activity
alpha-tubulin binding
transcription coregulator activity
androgen receptor binding
nuclear receptor coactivator activity
RNA結合
chromatin DNA binding
ubiquitin protein ligase binding
受容体結合
estrogen receptor binding
peroxisome proliferator activated receptor binding
細胞の構成要素 細胞質
細胞質基質
cytosolic ribosome
細胞核
RNAポリメラーゼII
尖端樹状突起
neuronal cell body
PML body
核質
intracellular membrane-bounded organelle
生物学的プロセス negative regulation of neuron apoptotic process
response to dietary excess
negative regulation of glycolytic process
response to fructose
cellular response to interleukin-6
周期的プロセス
cellular response to resveratrol
response to thyroid hormone
cellular response to fructose stimulus
cellular response to ionomycin
adaptive thermogenesis
response to ischemia
概日リズム
fatty acid oxidation
response to metformin
cellular response to caffeine
response to electrical stimulus involved in regulation of muscle adaptation
temperature homeostasis
cellular response to hypoxia
cellular response to glucose stimulus
positive regulation of fatty acid oxidation
cellular response to transforming growth factor beta stimulus
positive regulation of progesterone biosynthetic process
regulation of transcription, DNA-templated
cellular response to follicle-stimulating hormone stimulus
アンドロゲン代謝プロセス
活性酸素への反応
positive regulation of mitochondrial DNA metabolic process
消化
response to leucine
response to norepinephrine
response to epinephrine
transcription, DNA-templated
negative regulation of mitochondrial fission
positive regulation of transcription, DNA-templated
positive regulation of glomerular visceral epithelial cell apoptotic process
response to nutrient levels
RNAスプライシング
skeletal muscle atrophy
細胞呼吸
negative regulation of signaling receptor activity
positive regulation of gluconeogenesis
transcription initiation from RNA polymerase II promoter
cellular response to potassium ion
negative regulation of neuron death
negative regulation of protein phosphorylation
positive regulation of cellular respiration
mRNA processing
タンパク質の安定化
mitochondrion organization
positive regulation of DNA-binding transcription factor activity
response to electrical stimulus
circadian regulation of gene expression
小脳発生
positive regulation of ATP biosynthetic process
regulation of NMDA receptor activity
galactose metabolic process
positive regulation of muscle tissue development
regulation of circadian rhythm
flavone metabolic process
脂肪組織発生
respiratory electron transport chain
positive regulation of cellular metabolic process
response to muscle activity
cellular response to nitrite
positive regulation of smooth muscle cell proliferation
糖新生
androgen receptor signaling pathway
negative regulation of smooth muscle cell proliferation
低酸素症への反応
有機環状化合物への反応
cellular glucose homeostasis
cellular response to tumor necrosis factor
cellular response to estradiol stimulus
老化
negative regulation of smooth muscle cell migration
response to activity
positive regulation of histone acetylation
cellular response to fatty acid
マイトファジー
cellular response to thyroid hormone stimulus
response to methionine
餓死
response to cold
cellular response to oxidative stress
前脳発生
cellular response to lipopolysaccharide
positive regulation of transcription by RNA polymerase II
positive regulation of mitochondrion organization
褐色脂肪細胞の分化
protein-containing complex assembly
energy homeostasis
positive regulation of gene expression
positive regulation of cold-induced thermogenesis
出典:Amigo / QuickGO
オルソログ
ヒトマウス
Entrez
Ensembl
UniProt
RefSeq
(mRNA)

NM_013261
NM_001330751
NM_001330752
NM_001330753

NM_008904

RefSeq
(タンパク質)
NP_001317680
NP_001317681
NP_001317682
NP_037393
NP_001341754

NP_001341755
NP_001341756
NP_001341757

NP_032930
NP_001389916
NP_001389917
NP_001389918
NP_001389919

NP_001389920

場所
(UCSC)
n/aChr : 51.61 – 51.73 Mb
PubMed検索[2][3]
ウィキデータ
閲覧/編集 ヒト閲覧/編集 マウス

PPARGC1AまたはPGC-1α(peroxisome proliferator-activated receptor gamma coactivator 1-alpha)は、ヒトではPPARGC1A遺伝子にコードされるタンパク質である[4]PPARGC1Ahuman accelerated regionと呼ばれる、チンパンジーとの共通祖先からの分岐以降に塩基置換率が加速しているゲノム領域(HAR20)と関係しており、そのため類人猿からヒトの分岐に重要な役割を果たした可能性がある[5]

PGC-1αは、ミトコンドリア生合成英語版マスターレギュレーター英語版である[6][7][8]。また、PGC-1αは肝臓における糖新生の主要な調節因子であり、糖新生のための遺伝子発現の増加などを担う[9]

  1. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000029167 - Ensembl, May 2017
  2. ^ Human PubMed Reference:
  3. ^ Mouse PubMed Reference:
  4. ^ Esterbauer H, Oberkofler H, Krempler F, Patsch W (February 2000). "Human peroxisome proliferator activated receptor gamma coactivator 1 (PPARGC1) gene: cDNA sequence, genomic organization, chromosomal localization, and tissue expression". Genomics. 62 (1): 98–102. doi:10.1006/geno.1999.5977. PMID 10585775
  5. ^ Pollard KS, Salama SR, Lambert N, Lambot MA, Coppens S, Pedersen JS, Katzman S, King B, Onodera C, Siepel A, Kern AD, Dehay C, Igel H, Ares M, Vanderhaeghen P, Haussler D (September 2006). "An RNA gene expressed during cortical development evolved rapidly in humans". Nature. 443 (7108): 167–72. Bibcode:2006Natur.443..167P. doi:10.1038/nature05113. PMID 16915236. S2CID 18107797
  6. ^ Valero T (2014). "Mitochondrial biogenesis: pharmacological approaches". Curr. Pharm. Des. 20 (35): 5507–9. doi:10.2174/138161282035140911142118. hdl:10454/13341. PMID 24606795. Mitochondrial biogenesis is therefore defined as the process via which cells increase their individual mitochondrial mass [3]. ... This work reviews different strategies to enhance mitochondrial bioenergetics in order to ameliorate the neurodegenerative process, with an emphasis on clinical trials reports that indicate their potential. Among them creatine, Coenzyme Q10 and mitochondrial targeted antioxidants/peptides are reported to have the most remarkable effects in clinical trials.
  7. ^ Sanchis-Gomar F, García-Giménez JL, Gómez-Cabrera MC, Pallardó FV (2014). "Mitochondrial biogenesis in health and disease. Molecular and therapeutic approaches". Curr. Pharm. Des. 20 (35): 5619–5633. doi:10.2174/1381612820666140306095106. PMID 24606801. Mitochondrial biogenesis (MB) is the essential mechanism by which cells control the number of mitochondria.
  8. ^ Dorn GW, Vega RB, Kelly DP (2015). "Mitochondrial biogenesis and dynamics in the developing and diseased heart". Genes Dev. 29 (19): 1981–91. doi:10.1101/gad.269894.115. PMC 4604339. PMID 26443844
  9. ^ Klein MA, Denu JM (2020). "Biological and catalytic functions of sirtuin 6 as targets for small-molecule modulators". Journal of Biological Chemistry. 295 (32): 11021–11041. doi:10.1074/jbc.REV120.011438. PMC 7415977. PMID 32518153

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Tubidy