Geometria algebraica

Aquesta superfície de Togliatti és una superfície algebraica de grau cinc. La imatge representa un porció del seu locus real.

La geometria algebraica és una branca de les matemàtiques que combina l'àlgebra abstracta, especialment l'àlgebra commutativa, amb la geometria.

La geometria algebraica es pot comprendre com l'estudi dels conjunts de solucions dels sistemes d'equacions algebraiques. Quan hi ha més d'una variable, les consideracions geomètriques es tornen importants per entendre el fenomen. Podem dir que la matèria en comença quan abandonem la simple solució d'equacions i la qüestió de comprendre el conjunt de totes les solucions del sistema es torna tan important com trobar alguna solució. Això duu a aspectes molt sofisticats de les matemàtiques, tant conceptualment com tècnicament. En termes més tècnics, s'ocupa de l'estudi de les varietats definides per equacions polinòmiques.

Els objectes d'estudi fonamental de la geometria algebraica són les varietats algebraiques, que són manifestacions geomètriques de les solucions de sistemes d'equacions polinòmiques. Exemples de les classes més estudiades de varietats algebraiques són: corbes algebraiques, que inclouen rectes, circumferències, paràboles, el·lipses, hipèrboles, corbes cúbiques planes com ara les corbes el·líptiques, i corbes quàrtiques com la lemniscata de Bernoulli i els ovals de Cassini. Un punt del pla pertany a una corba algebraica si les coordenades satisfan una certa equació algebraica. Les qüestions més bàsiques de la geometria algebraica inclouen l'estudi de punts d'especial interès com els punts singulars d'una corba, els punts d'inflexió i els punts de l'infinit. Qüestions més avançades impliquen la topologia de la corba i les relacions entre les corbes obtingudes a partir de les diferents equacions.

La geometria algebraica ocupa un lloc central en les matemàtiques modernes i té moltes connexions conceptuals amb camps tan diversos com l'anàlisi complexa, la topologia i la teoria de nombres. Inicialment un estudi dels sistemes d'equacions polinòmiques de diferents variables, el tema de la geometria algebraica comença s'acaba la resolució d'equacions, i esdevé fins i tot més important entendre les propietat intrínseques de la totalitat de les solucions d'un sistema d'equacions que trobar una solució en particular; això porta a una de les àrees més profundes de totes les matemàtiques, tant conceptualment com tècnica.

En el segle xx, la geometria algebraica es va dividir en diverses subàrees.

Gran part del desenvolupament del principal corrent de la geometria algebraica en el segle XX es va donar en el marc de l'àlgebra abstracta, amb un èmfasi creixentment centrat en les propietats "intrínseques" de les varietats algebraiques independentment de cap forma particular d'embedding de la varietat en les coordenades de l'espai ambient; sempre en paral·lel als desenvolupaments de la topologia, de la geometria diferencial i complexa. Una fita clau d'aquesta geometria algebraica abstracta és la teoria d'esquemes de Grothendieck que va permetre usar la teoria de feixos en l'estudi de varietats algebraiques de forma molt similar al seu ús en l'estudi de varietats diferenciables i analítiques. Aquest resultat s'obté estenent la noció d'un punt: en geometria algebraica clàssica, es pot identificar un punt d'una varietat afí, a través del teorema dels zeros de Hilbert, amb un ideal maximal de l'anell de coordenades, mentre que els punts de l'esquema afí corresponent són tots ideals primers de l'anell. Això significa que un punt d'aquest esquema pot ser o bé un punt usual o una subvarietat. Aquest plantejament també permet una unificació del llenguatge i de les eines de la geometria algebraica clàssica, principalment centrats en punts complexos i en la teoria de nombres algebraics. La demostració de Wiles del llargament no resolt darrer teorema de Fermat és un exemple del potencial d'aquest plantejament.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by razib.in