Un nombre perfecte és un enter que és igual a la suma dels seus divisors positius, excepte ell mateix. Així, 6 és un nombre perfecte, perquè els seus divisors propis són 1, 2 i 3, i 6 = 1 + 2 + 3.[1] Els següents nombres perfectes són 28, 496 i 8.128.
Els nombres perfectes estan relacionats amb els nombres primers de Mersenne: si M és un primer de Mersenne (un nombre primer que és una unitat menor que una potència de 2), aleshores M(M+1)/2 és un nombre perfecte, és a dir, que 2n−1(2n − 1) és un nombre perfecte. Això va ser demostrat per Euclides[2] en el segle IV abans de la nostra era:
A més, Euler va demostrar en el segle xviii que tots els nombres perfectes parells són d'aquesta forma.[2] També està demostrat que l'última xifra de qualsevol nombre perfecte parell ha de ser 6 o 8.
No es coneix l'existència de nombres perfectes senars. No obstant això, existeixen alguns resultats parcials: si hi ha un nombre perfecte imparell, ha de complir, entre d'altres, les condicions següents: ser major que 10300; tenir almenys 8 factors primers diferents (i com a mínim 11 si no és divisible per 3); un d'aquests factors ha de ser major que 107, dos d'aquests han de ser majors que 10.000 i tres han ser majors que 100; tenir, com a mínim, 75 factors primers (incloent-hi repeticions).
Considerant la suma dels divisors propis, hi ha altres tipus de nombres.