Affine Ebene

Eine affine Ebene ist in der synthetischen Geometrie eine Punkte und Geraden umfassende Inzidenzstruktur, die im Wesentlichen durch zwei Forderungen charakterisiert ist, nämlich dass je zwei Punkte eine (eindeutige) Verbindungsgerade besitzen und dass es eindeutige parallele Geraden gibt. In der linearen Algebra und der analytischen Geometrie wird ein zwei-dimensionaler affiner Raum als affine Ebene bezeichnet. Der im vorliegenden Artikel beschriebene Begriff der synthetischen Geometrie verallgemeinert diesen bekannteren Begriff aus der linearen Algebra.

Eine affine Ebene, die nur endlich viele Punkte enthält, wird als endliche affine Ebene bezeichnet und als solche auch in der endlichen Geometrie untersucht. Besonders für diese Ebenen ist der Begriff Ordnung der Ebene wichtig: Sie ist definiert als die Anzahl der Punkte auf einer und damit jeder Geraden der Ebene.

Jede affine Ebene lässt sich durch Einführung uneigentlicher Punkte und einer aus diesen bestehenden uneigentlichen Geraden zu einer projektiven Ebene erweitern. Umgekehrt entsteht aus einer projektiven Ebene durch Entfernung einer Geraden mit ihren Punkten eine affine Ebene. → Siehe auch projektives Koordinatensystem.

Jede affine Ebene kann durch die Zuordnung eines Koordinatenbereichs koordinatisiert und durch zusätzliche Verknüpfungen, die sich aus den geometrischen Eigenschaften der Ebene in diesem Koordinatenbereich ergeben, algebraisiert werden. Eine affine Ebene im Sinne der linearen Algebra, also ein affiner Raum, dessen Vektorraum der Parallelverschiebungen ein zwei-dimensionaler Vektorraum über einem Körper ist, ergibt sich genau dann, wenn der Koordinatenbereich durch die geometrische Struktur isomorph zu ebendiesem Körper wird. Diese Beschreibung der affinen Ebene mit Hilfe eines Koordinatenbereichs, bei dem der algebraische Begriff Körper verallgemeinert wird, und ein Überblick über die Strukturen, die sich bei Gültigkeit wichtiger Schließungssätze ergeben, findet sich im Hauptartikel Ternärkörper.

Andererseits kann man die Gruppe der Parallelverschiebungen in einer affinen Ebene untersuchen, was zu einer anderen Algebraisierung führt, bei der der Begriff Parallelverschiebung, der in der linearen Algebra durch einen Vektor beschrieben werden kann, zum Begriff der Translation führt. Dieser Zugang, der den koordinatenbezogenen Zugang ergänzt, wird im Hauptartikel Affine Translationsebene beschrieben.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by razib.in