Affine Translationsebene

Als affine Translationsebene oder kurz Translationsebene wird in der synthetischen Geometrie eine affine Ebene dann bezeichnet, wenn ihre Translationsgruppe scharf einfach transitiv auf ihr operiert und sie daher weitgehend durch diese Gruppe ihrer Translationen (Parallelverschiebungen) beschrieben werden kann, indem jedem Punkt der Ebene eine Translation zugeordnet wird. Der Endomorphismenring der Translationsgruppe, die bei einer Translationsebene stets kommutativ ist, enthält einen Schiefkörper, den Schiefkörper der spurtreuen Endomorphismen. Die Gruppe der Translationen ist ein Modul über diesem Schiefkörper.[1]

Rein geometrisch ist eine affine Ebene genau dann eine Translationsebene, wenn in ihr der kleine affine Satz von Desargues (vergleiche die Abbildung am Ende der Einleitung) allgemeingültig ist, also ein Schließungssatz, der in der synthetischen Geometrie als Axiom verwendet wird.[1]

Daneben wird in der synthetischen Geometrie seltener der Begriff projektive Translationsebene[2] verwendet. Diese speziellen projektiven Ebenen hängen eng mit den affinen Translationsebenen zusammen. Dieser Zusammenhang wird im vorliegenden Artikel im Abschnitt Projektive Translationsebene erläutert. Die Begriffe affine Translationsebene bzw. projektive Translationsebene sind Verallgemeinerungen der Begriffe desarguessche affine bzw. desarguessche projektive Ebene.

Die Untersuchung der Translationen und ihrer spurtreuen Endomorphismen ist neben der Beschreibung durch einen Koordinatenternärkörper eine gängige Methode, nichtdesarguesche Ebenen zu algebraisieren. Für desarguesche und erst recht für pappussche Ebenen fällt der Schiefkörper der spurtreuen Endomorphismen mit dem Koordinatenschiefkörper zusammen, bei Translationsebenen ist er im Koordinatenquasikörper als Kern enthalten.

Die Algebraisierung einer affinen Ebene mithilfe von Koordinaten auf einer Geraden der Ebene, algebraische Verknüpfungen dieser Koordinaten sowie die Begriffe Ternärkörper und Quasikörper, die im vorliegenden Artikel verwendet werden, sind in den entsprechenden Hauptartikeln ausführlicher dargestellt.

Der kleine affine Satz von Desargues besagt: Sind und Dreiecke, bei denen die „Zuordnungsgeraden“ parallel sind: dann folgt aus der Parallelität von zwei Paaren von Dreiecksseiten (z. B. und ), dass auch das dritte Seitenpaar parallel ist (im Beispiel ).
  1. a b Degen (1976)
  2. Weibel (2007)

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by razib.in