Bildregistrierung

PET/CT: links CT, Mitte PET, rechts Resultat einer Registrierung (mit Falschfarbendarstellung)

Bildregistrierung ist ein wichtiger Prozess in der digitalen Bildverarbeitung und dient dazu, zwei oder mehrere Bilder derselben Szene, oder zumindest ähnlicher Szenen, bestmöglich in Übereinstimmung miteinander zu bringen. Dabei wird eines der Bilder als Referenzbild festgelegt, die anderen werden Objektbilder genannt. Um diese optimal an das Referenzbild anzupassen, wird eine ausgleichende Transformation berechnet. Die zu registrierenden Bilder unterscheiden sich voneinander, weil sie von unterschiedlichen Positionen, zu unterschiedlichen Zeitpunkten oder mit unterschiedlichen Sensoren aufgenommen wurden.

Bildregistrierungsverfahren sind vor allem in der medizinischen Bildverarbeitung häufig. Die mit verschiedenen bildgebenden Verfahren (Modalitäten) aufgenommenen Bilder werden aneinander angeglichen, um aus ihrer Kombination bessere Erkenntnisse zu gewinnen. Werden z. B. MRT-Bilder, die Weichteilgewebe oder Gehirnstrukturen gut darstellen, mit PET-Bildern überlagert, die bestimmte Stoffwechselprozesse sichtbar machen, kann man nachvollziehen, in welchen Gehirnbereichen bestimmte Stoffwechselprozesse stattfinden. Die Überlagerung wird auch als Bildfusion bezeichnet.

Ein weiteres Anwendungsbeispiel ist das Zusammenfügen mehrerer Satellitenbilder zu einer großen Karte. Da die Erdoberfläche gekrümmt ist und sich die Position des Satelliten von Bild zu Bild ändert, kommt es innerhalb der Bilder zu kleinen Verzerrungen, die mit Registrierungsverfahren aneinander angeglichen werden können – siehe auch Bildkorrelation.

Das Ziel der Bildregistrierung ist, jene Transformation T zu finden, die ein gegebenes Quellbild (Objektbild) F bestmöglich mit einem Zielbild (Referenzbild) G in Übereinstimmung bringt. Dazu wird ein Maß D für die Gleichheit oder die Ungleichheit der Bilder charakterisiert. Bildregistrierung ist also ein Optimierungsproblem, bei dem D(T(F), G) zu minimieren ist (falls D die Ungleichheit misst) bzw. zu maximieren (falls D die Gleichheit misst).


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by razib.in