De-Rham-Kohomologie

Die De-Rham-Kohomologie (nach Georges de Rham) ist eine mathematische Konstruktion aus der Algebraischen Topologie, welche die Kohomologie für glatte Mannigfaltigkeiten entwickelt, also für Kurven, Flächen und andere geometrische Objekte, die aus der Sicht der Analysis lokal aussehen wie ein euklidischer Raum. Diese Kohomologie benutzt den Satz von Stokes in seiner verallgemeinerten Form, der den Fundamentalsatz der Analysis erweitert und eine Verbindungslinie von der Differentialgeometrie zur Algebraischen Topologie eröffnet. Das Analogon der De-Rham-Kohomologie für komplexe Mannigfaltigkeiten ist die Dolbeault-Kohomologie.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by razib.in