Ein Dirac-String ist in der Elektrodynamik, einem Teilgebiet der Physik, eine eindimensionale Kurve zwischen magnetischen Monopolen (auch Dirac-Monopolen) verschiedener magnetischer Ladungen oder von einem Dirac-Monopol in die Unendlichkeit auf welchem dessen Vektorpotential divergiert. Wird dieses koordinatenfrei durch eine Differentialform beschrieben, lässt sich eine Verbindung zur De-Rham-Kohomologie herstellen. Dadurch wird ein magnetischer Monopol (ähnlich wie etwa der Aharanov–Bohm-Effekt) zu einem topologischen Effekt und ein Dirac-String zu einer zwingenden Notwendigkeit für eine passende De-Rham-Kohomologie. Benannt wurden Dirac-Strings nach Paul Dirac, welcher diese im Jahr 1931 erstmals beschrieb. Eine Korrespondenz zu -Hauptfaserbündeln über , zu denen insbesondere die (komplexe) Hopf-Faserung gehört, wurde von Tai Tsun Wu (chinesisch 吳大峻, Pinyin Wú Dàjùn) und Chen Ning Yang (chinesisch 杨振宁, Pinyin Yáng Zhènníng) im Jahr 1975 beschrieben.