Der dirichletsche Approximationssatz, benannt nach Peter Gustav Lejeune Dirichlet, ist ein mathematischer Satz über die Qualität der Approximation (Annäherung) reeller Zahlen durch rationale Zahlen.
Der Satz lautet:
Zu jedem und jedem existieren ein und ein , so dass
Dieser Satz kann mithilfe des Schubfachprinzips bewiesen werden.
Aus dem Satz folgt nach Division durch und Beachtung von , dass es zu jedem reellen unendlich viele Paare ganzer Zahlen gibt, die
erfüllen. Für rationale Zahlen haben fast alle solche Approximationen die Form , interessant ist die Unendlichkeitsaussage also nur für irrationale Zahlen. Der Satz von Hurwitz verbessert die Ungleichung noch um den Faktor .
Beispiel: Sei und . Dann ist nach dem dirichletschen Approximationssatz (mindestens) eine der Zahlen um höchstens von einer ganzen Zahl entfernt. Tatsächlich ist