Eine Drehmatrix oder Rotationsmatrix ist eine reelle, orthogonale Matrix mit Determinante +1. Ihre Multiplikation mit einem Vektor lässt sich interpretieren als (sogenannte aktive) Drehung des Vektors im euklidischen Raum oder als passive Drehung des Koordinatensystems, dann mit umgekehrtem Drehsinn. Bei der passiven Drehung ändert sich der Vektor nicht, er hat bloß je eine Darstellung (Koordinatenwerte) im alten und im neuen Koordinatensystem. Dabei handelt es sich stets um Drehungen um den Ursprung, da die Multiplikation einer Matrix mit dem Nullvektor diesen auf sich selbst abbildet.
In ungeraden Dimensionen werden durch eine Drehung weitere Vektoren auf sich selbst abgebildet, . Im dreidimensionalen Raum handelt es sich also um eine Gerade, die Drehachse. Eine Drehmatrix enthält trigonometrische Ausdrücke des Drehwinkels und der Orientierung des invarianten Unterraumes. In geraden Dimensionen muss die Drehmatrix keinen reellen Eigenwert haben.