Gravitationslinseneffekt

Simulation des Gravitationslinsen­effekts
Einsteinring: zwei Galaxien befinden sich in der Sichtline genau hinter­einander. Die vordere Galaxie wirkt als Gravitations­linse und bildet die hintere als Ring ab (Objekt LRG 3-757, aufgenommen mit dem Hubble-Weltraumteleskop)
Das Einsteinkreuz: Der Quasar QSO 2237+0305 steht von der Erde aus gesehen genau hinter dem Kern einer etwa 400 Millionen Lichtjahre entfernten Galaxie, die als Gravitations­linse wirkt. Durch die Gravitations­linse entstehen vier ähnlich helle Bilder in Form eines Kreuzes mit dem Galaxienkern im Zentrum.

Als Gravitationslinseneffekt wird in der Astronomie die Ablenkung von Licht durch große Massen bezeichnet. Der Name rührt her von der Analogie zu optischen Linsen und der wirkenden Kraft Gravitation.

Grundsätzlich wird dabei das Licht einer entfernten Quelle wie eines Sterns, einer Galaxie oder eines anderen astronomischen Objekts durch ein vom Betrachter gesehen davorliegendes Objekt, die Gravitationslinse, beeinflusst.

Lichtstrahlen, die von einer Gravitationslinse abgelenkt werden, werden umso stärker zur Masse hin abgelenkt, je näher sie an der ablenkenden Masse vorbeilaufen. Eine Gravitationslinse konzentriert das Licht, das an der ablenkenden Masse vorbeiläuft, auf die Achse zwischen Objekt und Beobachter. In verschiedenen Abständen am Objekt vorbeilaufende Lichtstrahlen schneiden aber die Achse in verschiedenen Entfernungen. Infolgedessen kann eine Gravitationslinse im Sinne der abbildenden Optik kein reelles Bild erzeugen. Die stattdessen erzeugte Lichtverteilung ist eine Kaustik.[1]

Im Gravitationsfeld der Gravitationslinse ändert sich die Ausbreitungsrichtung des Lichtes, sodass die Position der Quelle am Himmel verschoben erscheint. Auch kann ihr Bild dabei verstärkt, verzerrt oder sogar vervielfältigt werden. Nach dem Odd-Number-Theorem tritt dabei immer eine ungerade Anzahl von Bildern auf. Allerdings können dabei einige Bilder auch so stark abgeschwächt sein, dass nur eine gerade Anzahl beobachtbar ist.

Je nach Masse und Form (Massenverteilung) der beteiligten Objekte und ihrer Lage zueinander kann der Effekt unterschiedlich stark ausfallen, von spektakulär verzerrten Mehrfachbildern bis hin zu nur leichten Helligkeitsänderungen, sodass man vom Starken Gravitationslinseneffekt, vom Schwachen Gravitationslinseneffekt und vom Mikrolinseneffekt spricht. Ein Spezialfall des Gravitationslinseneffekts ist die Kosmische Scherung.

Bereits Isaac Newton vermutete 1704 in den berühmten Queries Nr. 1 seines Werkes Opticks die gravitative Lichtablenkung.[2] Die erste quantitative Überlegung dazu gab es um 1800, sie wurde aber erstmals 1915/16 von Albert Einstein mit seiner Allgemeinen Relativitätstheorie korrekt beschrieben. Nach ersten Beobachtungen an der Sonne 1919 und einigen theoretischen Arbeiten gelangen jedoch erst ab 1979 dank verbesserter Beobachtungstechniken Beobachtungen weiterer Gravitationslinsen.[3][4] Seitdem hat sich der Gravitationslinseneffekt zu einem vielfältigen Gebiet der Beobachtenden Astronomie und auch zu einem Werkzeug für andere Felder wie die Kosmologie entwickelt.

  1. Chris Kitchin: Exoplanets: finding, exploring, and understanding alien worlds. Springer, 2012, ISBN 978-1-4614-0643-3, Appendix IV, S. 255 ff.
  2. Referenzfehler: Ungültiges <ref>-Tag; kein Text angegeben für Einzelnachweis mit dem Namen IsaacNewton_1704.
  3. Albert Einstein: Lens-Like Action of a Star by the Deviation of Light in the Gravitational Field. In: Science. Vol. 84, No. 2188, 4. Dezember 1936, S. 506–507 (infn.it [PDF; 393 kB]);
    Sidney Liebes: Gravitational Lenses. In: Physical Review. Vol. 133, Issue 3B, 1964, S. 835–844, bibcode:1964PhRv..133..835L.
  4. V. R. Eshleman: Gravitational lens of the sun – Its potential for observations and communications over interstellar distances. In: Science. Vol. 205, 14. September 1979, S. 1133–1135, bibcode:1979Sci...205.1133E.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by razib.in