Hausdorff-Konvergenz ist ein Begriff aus der Mathematik, mit dem beschrieben wird, dass kompakte Teilmengen des (oder eines allgemeinen metrischen Raumes) sich einer Grenzmenge annähern. Er wird in der fraktalen Geometrie zur Konstruktion von Fraktalen und in der Differentialgeometrie zum Führen von Widerspruchsbeweisen verwendet.
Allgemeiner gehalten ist der Begriff der Gromov-Hausdorff-Konvergenz, welcher Konvergenz von beliebigen Folgen kompakter metrischer Räume (nicht notwendig Teilmengen eines gegebenen Raumes) beschreibt.