Integralsinus

Verlauf des Integralsinus im Bereich 0 ≤ x ≤ 8π

Der Integralsinus ist ein Begriff aus der Mathematik und bezeichnet eine durch ein Integral gegebene Funktion. Joseph Liouville (1809–1882) bewies, dass der Kardinalsinus nicht elementar integrierbar ist.[1][2][3][4]

Der Integralsinus ist definiert als das Integral der Sinc-Funktion:

.[5]
  1. J. Liouville: „Mémoire. Sur la classification des Transcendantes et sur l’impossibilité d’exprimer les racines des certaines équations en fonction finie explicite des coefficients. Part 1“. Journal de Mathématiques Pures et Appliquées, 2, 56–105, 1837.
  2. J. Liouville: „Suite du Mémoire. Sur la classification des Transcendantes et sur l’impossibilité d’exprimer les racines des certaines équations en fonction finie explicite des coefficients. Part 2“. Journal de Mathématiques Pures et Appliquées, 3, 523–547, 1838.
  3. J. Liouville: „Mémoire. Sur l’integration d’une classe d’Équations différentielles du second ordre en quantités finies explicites“. Journal de Mathématiques Pures et Appliquées, 4, 423–456, 1839.
  4. Joseph (Fels) Ritt: Integration in Finite Terms: Liouville’s Theory of Elementary Methods. Columbia University Press, New York 1948.
  5. Siegfried (Johannes) Gottwald: Handbuch der Mathematik. Ein Ratgeber für Schule und Praxis, zum Selbststudium besonders geeignet. Buch und Zeit Verlagsgesellschaft, Köln 1986. ISBN 3-8166-0015-8. S. 517 (704 S.).

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by razib.in