Der Kapillareffekt, auch Kapillarwirkung, ist ein Phänomen in der Physik flüssiger Materie. Kapillarität ist in erster Linie die Stoffeigenschaft, die den Effekt hervorruft, wird aber auch synonym zu Kapillareffekt verwendet. Durch die vom Kapillareffekt hervorgerufene Kapillarkraft bewegt sich die Grenzfläche in Abwesenheit treibender externer Kräfte oder sogar entgegen zu externen Kräften, wie etwa der Gravitationskraft.
Der Effekt tritt auf, wenn sich die Grenzfläche (ein sog. Meniskus) einer Flüssigkeit in einer Kapillaren oder Spalten eines Feststoffs befindet. Die Grenzfläche liegt dabei zwischen einer Flüssigkeit und einer zweiten fluiden Phase, wie einem Gas oder einer weiteren Flüssigkeit, die mit der ersten Flüssigkeit nicht mischbar ist. Der Kapillareffekt wird durch die Oberflächenspannung der Flüssigkeit (Kohäsion) und die Grenzflächenspannung zwischen der Flüssigkeit und der festen Oberfläche (Adhäsion) beziehungsweise die Benetzbarkeit der festen Oberfläche mit der Flüssigkeit bestimmt.[1]
Da das Gewicht der Flüssigkeit in engen Hohlräumen gering ist, überwiegt die Kapillarkraft gegenüber der Schwerkraft und hilft etwa Bäumen dabei, Wasser aus den Wurzeln bis zu 100 Meter hoch aufsteigen zu lassen (siehe Wassertransport in Pflanzen). Die Kapillarität des Dochts bewirkt, dass flüssiges Wachs im Docht zur Flamme aufsteigt und dass sich poröse Materialien wie Ziegel, Textilien und Papier mit Wasser vollsaugen. In nicht-porösem Material steigt Wasser gegen die Gravitationskraft auf, wenn feine Spalte vorliegen wie etwa in feinem Sand oder engen Glasröhrchen.