Kapillareffekt

Dieser Artikel wurde in die Qualitätssicherung der Redaktion Physik eingetragen. Wenn du dich mit dem Thema auskennst, bist du herzlich eingeladen, dich an der Prüfung und möglichen Verbesserung des Artikels zu beteiligen. Der Meinungsaustausch darüber findet derzeit nicht auf der Artikeldiskussionsseite, sondern auf der Qualitätssicherungs-Seite der Physik statt.
Kapillarfluss-Experiment zur Untersuchung von kapillarem Fluss und Phänomenen auf der Internationalen Raumstation.

Der Kapillareffekt, auch Kapillarwirkung, ist ein Phänomen in der Physik flüssiger Materie. Kapillarität ist in erster Linie die Stoffeigenschaft, die den Effekt hervorruft, wird aber auch synonym zu Kapillareffekt verwendet. Durch die vom Kapillareffekt hervorgerufene Kapillarkraft bewegt sich die Grenzfläche in Abwesenheit treibender externer Kräfte oder sogar entgegen zu externen Kräften, wie etwa der Gravitationskraft.

Der Effekt tritt auf, wenn sich die Grenzfläche (ein sog. Meniskus) einer Flüssigkeit in einer Kapillaren oder Spalten eines Feststoffs befindet. Die Grenzfläche liegt dabei zwischen einer Flüssigkeit und einer zweiten fluiden Phase, wie einem Gas oder einer weiteren Flüssigkeit, die mit der ersten Flüssigkeit nicht mischbar ist. Der Kapillareffekt wird durch die Oberflächenspannung der Flüssigkeit (Kohäsion) und die Grenzflächenspannung zwischen der Flüssigkeit und der festen Oberfläche (Adhäsion) beziehungsweise die Benetzbarkeit der festen Oberfläche mit der Flüssigkeit bestimmt.[1]

Da das Gewicht der Flüssigkeit in engen Hohlräumen gering ist, überwiegt die Kapillarkraft gegenüber der Schwerkraft und hilft etwa Bäumen dabei, Wasser aus den Wurzeln bis zu 100 Meter hoch aufsteigen zu lassen (siehe Wassertransport in Pflanzen). Die Kapillarität des Dochts bewirkt, dass flüssiges Wachs im Docht zur Flamme aufsteigt und dass sich poröse Materialien wie Ziegel, Textilien und Papier mit Wasser vollsaugen. In nicht-porösem Material steigt Wasser gegen die Gravitationskraft auf, wenn feine Spalte vorliegen wie etwa in feinem Sand oder engen Glasröhrchen.

  1. Pierre-Gilles de Gennes, Françoise Brochard-Wyart, David Quéré: Capillarity and Wetting Phenomena. Springer-Verlag, New York 2004, ISBN 978-1-4419-1833-8, 2.4 Capillary Rise in Tubes: Jurin's Law, doi:10.1007/978-0-387-21656-0 (springer.com [abgerufen am 25. Oktober 2023]).

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by razib.in