Unter Kurvendiskussion versteht man in der Mathematik die Untersuchung des Graphen einer Funktion auf dessen geometrische Eigenschaften, wie zum Beispiel Schnittpunkte mit den Koordinatenachsen, Hoch- und Tiefpunkte, Wendepunkte, gegebenenfalls Sattel- und Flachpunkte, Asymptoten, Verhalten im Unendlichen usw. Diese Informationen erlauben es, eine Skizze des Graphen anzufertigen, aus der all diese für die Funktion charakteristischen Eigenschaften unmittelbar ablesbar sind.
Es ist heute hingegen nicht mehr das Ziel einer Kurvendiskussion, den Menschen dabei zu unterstützen, eine möglichst genaue Zeichnung des Graphen der Funktion zu produzieren: das kann inzwischen jeder Funktionsplotter (etwa ein grafikfähiger Taschenrechner, ein Smartphone mit entsprechender Software, ein Tabellenkalkulationsprogramm oder Computeralgebra-Software) besser.
Ziel der Kurvendiskussion ist vielmehr,
Zudem lässt sich eine Kurvendiskussion auch ganz ähnlich bei Funktionen durchführen, die von vielen Variablen abhängen (also z. B. von , und anstelle von nur ). Eine zwei- oder dreidimensionale Visualisierung einer derartigen Funktion ist nicht mehr möglich.
Die Bedeutung der Kurvendiskussion wird auch deutlich vor dem Hintergrund, dass in entscheidungsunterstützenden Systemen Hoch- bzw. Tiefpunkte automatisch, d. h. ohne Benutzerinteraktion, zu berechnen sind. Soll beispielsweise die Auswirkung der Veränderung einer Randbedingung auf die zu optimierende Größe untersucht werden, so würde solch ein System den jeweiligen Extremwert anzeigen bzw. grafisch visualisieren, während ein Wert, der die Randbedingung beschreibt (etwa die Höhe einer Ressource), variiert wird.