Mandelbrot-Menge

Mandelbrot-Menge (schwarz) mit farbig kodierter Umgebung (rot→blau→grün→…). Jedes Pixel entspricht einer komplexen Zahl . Farbig kodiert ist die Anzahl an notwendigen Iterationen , sodass wird. Sie steigt von den Ecken von 5 (dunkelrot) nach innen von Farbstreifen zu Farbstreifen um je 1.

Die Mandelbrot-Menge, benannt nach Benoît Mandelbrot, ist die Menge der komplexen Zahlen , für welche die durch die iterative Vorschrift mit dem Anfangswert definierte Folge endlich bleibt, d. h. beschränkt ist.

Interpretiert man die Mandelbrot-Menge (eine Teilmenge der Gaußschen Zahlenebenen) als geometrische Figur, so ergibt sie ein Fraktal, das im allgemeinen Sprachgebrauch oft Apfelmännchen genannt wird. Bilder berechnet man, indem man jedem Pixel eines Bildes eine komplexe Zahl zuordnet [A 1] und beginnend mit untersucht, ob und wann die Iterationen anfangen, zu „explodieren“. Bleiben die Werte klein, wird das Pixel häufig schwarz gefärbt, kommt es zu einer „Explosion“ der Zahlenwerte, wird die Anzahl der dafür notwendigen Iterationen als Farbe kodiert.[A 2]

Die ersten mit einem Computer generierten Darstellungen[A 3] wurden 1978 von Robert W. Brooks und Peter Matelski vorgestellt.[1] 1980 veröffentlichte Benoît Mandelbrot eine Arbeit über das Thema.[2] Später wurde sie von Adrien Douady und John Hamal Hubbard in einer Reihe grundlegender mathematischer Arbeiten systematisch untersucht.[3] Die mathematischen Grundlagen dafür wurden bereits 1905 von dem französischen Mathematiker Pierre Fatou erarbeitet.


Referenzfehler: <ref>-Tags existieren für die Gruppe A, jedoch wurde kein dazugehöriges <references group="A" />-Tag gefunden.

  1. Robert Brooks, J. Peter Matelski: The dynamics of 2-generator subgroups of PSL(2,C). In: Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference. In: Annals of Mathematics Studies. Band 97, Princeton University Press, Princeton, N.J., 1981, S. 65–71. PDF; 0,9 MB.
  2. Benoît Mandelbrot: Fractal aspects of the iteration of for complex . In: Annals of the New York Academy of Sciences. 357, 249–259.
  3. Adrien Douady, John H. Hubbard: Etude dynamique des polynômes complexes. In: Prépublications mathématiques d’Orsay. 2/4, 1984/1985. PDF; 5,2 MB (Memento vom 30. Januar 2017 im Internet Archive). Englische Übersetzung: PDF; 1,6 MB.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by razib.in