Eine mathematische Konstante ist eine wohldefinierte, reelle, nicht-ganzzahlige Zahl, die in der Mathematik von besonderem Interesse ist.[1] Anders als physikalische Konstanten werden mathematische Konstanten unabhängig von jedem physikalischen Maß definiert und sind demnach einheitenlos. Viele spezielle Zahlen haben eine besondere Bedeutung in der Mathematik und treten in vielen unterschiedlichen Kontexten auf. Beispielsweise gibt es auf den reellen oder komplexen Zahlen genau eine differenzierbare Funktion mit und . Daraus abgeleitet wird die mathematische Konstante definiert. Auf den komplexen Zahlen ist eine periodische Funktion, und ihre Periodenlänge ist eine weitere mathematische Konstante: . Mathematische Konstanten lassen sich in vielen Fällen numerisch beliebig genau berechnen. Jedoch gibt es auch einige mathematische Konstanten, für die nur sehr grobe Näherungen bekannt sind, wie zum Beispiel die Brunsche Konstante
Mathematische Konstanten werden in unterschiedlichen Teilgebieten der Mathematik untersucht. Von den meisten mathematischen Konstanten ist trotz großer Anstrengungen ungeklärt, ob sie rational, irrational-algebraisch oder transzendent sind. Eine besonders einfache Klasse bilden die polylogarithmischen Konstanten, zu denen die Logarithmen und die Werte der Riemannschen Zetafunktion an den positiven ganzzahligen Argumentstellen gehören. Für einen Teil dieser Klasse sind BBP-Reihen bekannt.