Die Normalparabel ist die spezielle Parabel mit der Gleichung , also der Graph der Quadratfunktion . Sie ist symmetrisch zur -Achse und nach oben offen. Ihr Scheitelpunkt liegt im Koordinatenursprung. Der Name ergibt sich aus der Normierung der Parameter in der allgemeinen Parabelgleichung auf die speziellen Werte , , .
Zuweilen wird auch nach einer Verschiebung oder auch Spiegelung der Parabel noch von einer verschobenen bzw. gespiegelten Normalparabel gesprochen. Diese hat dann die allgemeine Gleichung bzw. mit reellen Koeffizienten und . Charakteristisch für die Normalparabel bleibt in jedem Fall der Koeffizient 1 bzw. −1 vor dem quadratischen Glied, der die Öffnungsweite des Graphen bestimmt.