Ortsvektor

Zwei Punkte und ihre Ortsvektoren
Ortsvektoren (hier durch und bezeichnet) im kartesischen Koordinatensystem

Als Ortsvektor (auch Radiusvektor, Positionsvektor oder Stützvektor) eines Punktes bezeichnet man in der Mathematik und in der Physik einen Vektor, der von einem festen Bezugspunkt zu diesem Punkt (Ort) zeigt.[1] In der elementaren und in der synthetischen Geometrie können diese Vektoren als Klassen von verschiebungsgleichen Pfeilen oder gleichwertig als Parallelverschiebungen definiert werden.

Ortsvektoren ermöglichen es, für die Beschreibung von Punkten, von Punktmengen und von Abbildungen die Vektorrechnung zu benutzen. Legt man ein kartesisches Koordinatensystem zugrunde, dann wählt man in der Regel den Koordinatenursprung als Bezugspunkt für die Ortsvektoren der Punkte. In diesem Fall stimmen die Koordinaten eines Punktes bezüglich dieses Koordinatensystems mit den Koordinaten seines Ortsvektors überein.

In der analytischen Geometrie werden Ortsvektoren verwendet, um Abbildungen eines affinen oder euklidischen Raums zu beschreiben und um Punktmengen (wie zum Beispiel Geraden und Ebenen) durch Gleichungen und Parameterdarstellungen zu beschreiben.

In der Physik werden Ortsvektoren verwendet, um den Ort eines Körpers in einem euklidischen Raum zu beschreiben. Ortsvektoren zeigen bei Koordinatentransformationen ein anderes Transformationsverhalten als kovariante Vektoren.

  1. Istvan Szabó: Einführung in die Technische Mechanik. Springer, 1999, ISBN 3-540-44248-0, S. 12.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by razib.in