Pulsar

Gammastrahlenzyklus des Vela-Pulsars (Zeitlupe, farbcodierte Quantenenergiebereiche).
Schematische Darstellung eines Pulsars. Die Kugel in der Mitte stellt einen Neutronenstern dar, die Kurven die magnetischen Feldlinien und die seitlich abstehenden Lichtkegel die Richtung der ausgehenden Strahlung.

Ein Pulsar (Kunstwort aus englisch pulsating source of radio emission, „pulsierende Radioquelle“) ist ein schnell rotierender, stark magnetisierter Neutronenstern. Sie bestehen zu annähernd 90 % aus Neutronen, besitzen eine Masse, die etwa dem Eineinhalbfachen der Sonnenmasse entspricht aber komprimiert auf einen Radius von nur ca. 10 km. Neutronensterne sind damit quasi überdimensionale Atomkerne in den Weiten des Universums. Das starke, mit dem Neutronenstern rotierende Magnetfeld führt zu starken elektromagnetischen Feldern die wiederum geladene Teilchen entlang der Magnetfelder beschleunigen. Da die Magnetfelder gekrümmt sind und geladene Teilchen, die sich auf gekrümmten Bahnen bewegen, eine beschleunigte Bewegung ausführen, strahlen die Teilchen intensive Krümmungsstrahlung (quasi Synchrotronstrahlung) ab. Während es sich bei der von Neutronensternen abgegebenen Radiostrahlung um kohärente Strahlung handelt, quasi 10^27 Elektronen bewegen sich gleichphasig entlang der Magnetfeldlinien, handelt es sich bei der von Pulsaren im optischen, Röntgen- und Gammastrahlenbereich detektierten Strahlung um Einteilchenprozesse. Zur gepulsten Strahlung (die diesen Sternen den Namen gegeben hat) kommt es dabei, wenn die Rotationsachse und Magnetfeldachse des Neutronensterns in ihrer Ausrichtung voneinander abweichen. Liegt die Erde in dem engen Strahlungskegel der von Neutronensternen abgegebenen Strahlung, beobachtet man mit Teleskopen wie von Leuchttürmen periodisch wiederkehrende Signale. Pulsare strahlen bei allen Wellenlängen über das gesamte elektromagnetische Spektrum. Je nach galaktischer Absorption und Empfindlichkeit des Beobachtungsinstrumentes ist diese breitbandige elektromagnetische Strahlung jedoch nicht von allen Pulsaren gleich gut zu beobachten. Von den heute mehr als 3300 bekannten Radiopulsaren ließen sich bisher nur etwa 2 % im sichtbaren Bereich beobachten. Im Röntgen- und Gammastrahlenbereich sind es etwa 10 %.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Tubidy