Riemannsche Vermutung

Bernhard Riemann (1863)

Die Riemannsche Vermutung, Riemannsche Hypothese, Riemannhypothese oder kurz RH trifft eine Aussage über die Verteilung der Primzahlen und ist nach Meinung führender Mathematiker das derzeit bedeutendste ungelöste Problem der reinen Mathematik. Sie wurde erstmals 1859 von Bernhard Riemann in seiner Arbeit Über die Anzahl der Primzahlen unter einer gegebenen Größe in einem Nebensatz formuliert. Nachdem sie bereits im Jahr 1900 von David Hilbert auf seine Liste 23 wichtiger Jahrhundertprobleme gesetzt worden war, wurde sie im Jahr 2000 vom Clay Mathematics Institute in die Liste der sieben Millennium-Probleme der Mathematik aufgenommen. Das Institut in Cambridge (Massachusetts) hat damit ein Preisgeld von einer Million US-Dollar für eine schlüssige Lösung des Problems in Form eines mathematischen Beweises ausgelobt. Hinsichtlich des Auffindens potenzieller Gegenbeispiele existieren in der Preisausschreibung jedoch Sonderregeln, insbesondere dann, wenn diese mit der Rechenkraft moderner Computer erlangt wurden, und keinerlei „tiefere Einsicht“ in das Problem geben können.

Einfach gesprochen sagt die Riemannsche Vermutung aus, dass sich die Folge der Primzahlen „möglichst zufällig“ verhält. Das sollte sich zum Beispiel dadurch äußern, dass die Abfolge der Ereignisse, dass eine natürliche Zahl eine gerade Anzahl an Primfaktoren besitzt, wie zum Beispiel , oder eine ungerade Anzahl an Primfaktoren besitzt, wie , für , also nach dem Schema (mit Null Primfaktoren für die 1)

auf lange Sicht ungefähr ein Verhalten aufweist, das auch ein unendlich häufig wiederholter Münzwurf mit „Kopf“ und „Zahl“ realistischerweise haben könnte. Eine Theorie, welche die Riemannsche Vermutung löst und damit eine tiefere Erklärung für diese Zufälligkeit unter den Primzahlen lieferte, könnte daher aus Sicht der Mathematiker ein fundamental neues Verständnis für Zahlen im Allgemeinen nach sich ziehen.

Übersetzt man dies in die Fachsprache der analytischen Zahlentheorie, ist die Riemannsche Vermutung gleichbedeutend mit der Aussage, dass sämtliche komplexen Nullstellen der Riemannschen Zeta-Funktion im sog. kritischen Streifen den Realteil besitzen. Dies ist auch die ursprünglich von Riemann formulierte Version der Vermutung. Die Zeta-Funktion ist eine mathematische Funktion, die Informationen über Primzahlen in ihrem Abbildungsverhalten kodiert: Bereits Leonhard Euler erkannte, dass sie sich als ein Euler-Produkt über die Primzahlen darstellen lässt, sich die Funktionswerte also mit Hilfe der Primzahlen bestimmen lassen. Auf der anderen Seite kann die Zeta-Funktion als ein Produkt über ihre Nullstellen dargestellt werden, ähnlich wie sich Polynome durch ihre Nullstellen faktorisieren lassen, wie etwa . Es liegen also zwei verschiedene Produktdarstellungen derselben Funktion vor. Durch dieses hiervon induzierte Zusammenspiel ergibt sich, dass die Nullstellen Eigenschaften der Primzahlen kodieren, und die Primzahlen wiederum Eigenschaften der Nullstellen. Mathematiker sprechen in diesem Zusammenhang oft von einer Dualität.

Es ist schon bekannt und bewiesen, dass die Zeta-Funktion reelle Nullstellen hat, die sogenannten trivialen Nullstellen. Ferner weiß man seit Beginn des 20. Jahrhunderts, dass die Zeta-Funktion unendlich viele nichtreelle Nullstellen mit dem Realteil besitzt. Die Riemannsche Vermutung besagt also, dass es darüber hinaus keine weiteren Nullstellen gibt, d. h., dass alle nichttrivialen Nullstellen der Zeta-Funktion auf einer Geraden in der Zahlenebene parallel zur imaginären Achse liegen. Da die Zeta-Funktion über eine Funktionalgleichung ein elementares Spiegelungsgesetz bezüglich besitzt, ist sie äquivalent dazu, dass sich sämtliche Nullstellen „möglichst weit links“ befinden, wobei „linke Nullstellen“ eine eher gleichmäßige Primzahlverteilung zur Folge haben. Gleichzeitig baut die bloße Existenz von diesen Nullstellen eine natürliche Barriere auf, die so gedeutet werden kann, dass Primzahlen nicht beliebig gleichmäßig, wie etwa „Kopf, Zahl, Kopf, Zahl, Kopf, Zahl, …“, verteilt sein können.

Viele bisher ungelöste Fragestellungen, besonders aus der Zahlentheorie, können mit der Richtigkeit der Riemannschen Vermutung beantwortet werden. Dies betrifft Probleme aus der mathematischen Grundlagenforschung, wie etwa solche der Primzahlverteilung im Umfeld des Primzahlsatzes oder der offenen Goldbachschen Vermutung, als auch der angewandten Mathematik, wie schnelle Primzahltests. Gleichzeitig gilt sie auch als äußerst schwierig zu beweisen. Bisherige Beweisversuche von prominenten Mathematikern scheiterten allesamt. Ein Grund hierfür ist, dass die Menschheit aus Expertensicht bisher nicht über die nötigen mathematischen Werkzeuge verfügt, sie überhaupt angreifen zu können. So gilt es als sehr wahrscheinlich, dass sie nicht mit rein analytischen Mitteln, also durch bloße Untersuchung des „Funktionsterms“ der Zeta-Funktion mittels des Theorieapparats der holomorphen Funktionen, gezeigt werden kann, sondern mit dem Euler-Produkt eine entscheidende arithmetische Komponente mitspielen muss, obwohl dieses im kritischen Streifen nicht mehr konvergiert, was erhebliche Schwierigkeiten mit sich bringt. So gibt es andere Zeta-Funktionen, die der Riemannschen Zeta-Funktion in ihren Eigenschaften sehr stark ähneln, jedoch kein Euler-Produkt besitzen, und bei denen die Riemannsche Vermutung erwiesenermaßen falsch ist.

Durch umfassenden Einsatz von Computern ist es gelungen, die Riemannsche Vermutung für die ersten 10 Billionen Nullstellen der Zeta-Funktion zu bestätigen. Da die Zeta-Funktion jedoch nachweislich unendlich viele nichtreelle Nullstellen besitzt, könnte sie auf diese Weise nur durch Angabe eines expliziten Gegenbeispiels widerlegt, jedoch nicht bewiesen werden. Ein Gegenbeispiel wäre eine Nullstelle im kritischen Streifen mit Realteil ungleich .


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Tubidy