In der Topologie und verwandten Gebieten der Mathematik betrachtet man oft nicht alle topologischen Räume, sondern stellt bestimmte Bedingungen, die von den interessierenden Räumen erfüllt werden sollen. Einige dieser Bedingungen nennt man Trennungsaxiome oder Trennungseigenschaften. Sie werden nach Andrei Nikolajewitsch Tichonow manchmal auch als Tichonow-Trennungsaxiome (bzw. in älterer Transkription Tychonoff-Trennungsaxiome) bezeichnet.
Die Trennungsaxiome sind Axiome in dem Sinn, dass man bei der Definition eines topologischen Raums einige dieser Bedingungen zusätzlich fordern kann, um einen stärker eingeschränkten Begriff des topologischen Raums zu erhalten. Die moderne Herangehensweise besteht darin, die Axiome des topologischen Raums ein für alle Mal zu fixieren (wie sie im Artikel topologischer Raum gegeben sind) und dann von bestimmten Arten topologischer Räume zu sprechen. Der Name „Trennungsaxiom“ für diese Bedingungen hat sich aber bis heute erhalten. Viele Trennungsaxiome werden mit dem Buchstaben „T“ (für „Trennung“) bezeichnet.
Die genaue Bedeutung der Begriffe, die in den Trennungsaxiomen vorkommen, hat sich im Laufe der Zeit verändert. Beim Lesen älterer Literatur sollte man also darauf achten, die vom Autor verwendete Definition zu kennen.
Zur Formulierung der Trennungsaxiome benötigen wir einige Begriffe, die im Folgenden definiert werden.