Ein Weg eines als punktförmig angenommenen Objektes ist der Verlauf seines Ortes bei fortschreitender Zeit infolge seiner Bewegung. Der Weg wird auch als Bahn bezeichnet; er verläuft entlang einer Bahnkurve.[1][2] Die Position auf dem Weg wird durch einen Ortsvektor relativ zu einem beliebig wählbaren Bezugspunkt beschrieben,[3][4] welcher als ruhend angenommen wird.[5] Das bevorzugte Formelzeichen zum Weg ist das (von lat. spatium ‚Raum‘, ‚Ausdehnung‘, ‚Entfernung‘).
Teilweise wird mit dem Begriff „Weg“ seine Länge entlang der Bahnkurve gemeint. Zur Unterscheidung wird diese skalare Größe auch als zurückgelegter Weg, Wegstrecke oder Bogenlänge bezeichnet.[6][7][8]
- ↑ Walter Weizel: Lehrbuch der theoretischen Physik: Band 1 Physik der Vorgänge. Springer, 2. Aufl. 1955, S. 5
- ↑ Ernst Grimsehl, Kurt Altenburg: Grimsehl Lehrbuch der Physik: Band 1 Mechanik • Akustik • Wärmelehre. Springer, 27. Aufl. 1991, S. 27
- ↑ Bruno Assmann, Peter Selke: Technische Mechanik 3: Band 3: Kinematik und Kinetik. Oldenbourg, 14. Aufl. 2007, S. 62
- ↑ Gottfried Falk, Wolfgang Ruppel: Mechanik, Relativität, Gravitation: Die Physik des Naturwissenschaftlers. Springer, 3. Aufl. 1983, S. 23.
- ↑ Paul Dobrinski, Gunter Krakau, Anselm Vogel: Physik für Ingenieure. Vieweg+Teubner, 12. Aufl. 2010, S. 17.
- ↑ Lothar Papula: Mathematik für Ingenieure und Naturwissenschaftler Band 3: Vektoranalysis … Springer Vieweg, 7. Aufl. 2016, S. 12 ff
- ↑ Klaus Lüders, Robert O. Pohl (Hrsg.): Pohls Einführung in die Physik: Mechanik, Akustik und Wärmelehre. Springer, 19. Aufl., S. 11.
- ↑ Helmut Lindner: Physik für Ingenieure. Vieweg, 12. Aufl. 1991, S. 34