Weibull-Verteilung | |
Dichtefunktion Dichtefunktion für verschiedene Formparameter | |
Verteilungsfunktion Verteilungsfunktion für verschiedene Formparameter k | |
Parameter | — Formparameter — inverser Skalenparameter |
---|---|
Träger | |
Dichtefunktion | |
Verteilungsfunktion | |
Erwartungswert | |
Varianz |
Die Weibull-Verteilung (nach Waloddi Weibull, 1939/1951)[1][2] ist eine zweiparametrige Familie von stetigen Wahrscheinlichkeitsverteilungen über der Menge der positiven reellen Zahlen. Obwohl nach Weibull benannt, wurde sie zuerst von Maurice René Fréchet identifiziert[3] und erstmals von Rosin & Rammler zur Beschreibung einer Partikelgrößenverteilung angewendet.[4] Abhängig von ihren beiden Parametern ähnelt sie einer Normalverteilung oder asymmetrischen Verteilungen wie der Exponentialverteilung. Sie wird unter anderem zur statistischen Modellierung von Windgeschwindigkeiten oder zur Beschreibung der Lebensdauer und Ausfallhäufigkeit von elektronischen Bauelementen oder (spröden) Werkstoffen herangezogen. Wenn sie als Verteilung einer zufälligen Lebensdauer verwendet wird, berücksichtigt sie, anders als eine Exponentialverteilung, die Vorgeschichte eines Objekts, sie ist gedächtnisbehaftet und berücksichtigt die Alterung eines Bauelements nicht nur mit der Zeit, sondern in Abhängigkeit von seinem Einsatz. Sie lässt sich an steigende, konstante und fallende Ausfallraten technischer Systeme anpassen. Eine besondere Bedeutung hat die Weibull-Verteilung in der Ereigniszeitanalyse.