Natural number
208 (two hundred [and] eight) is the natural number following 207 and preceding 209.
208 is a practical number,[1]
a tetranacci number,[2][3] a rhombic matchstick number,[4] a happy number, and a member of Aronson's sequence.[5]
There are exactly 208 five-bead necklaces drawn from a set of beads with four colors,[6]
and 208 generalized weak orders on three labeled points.[7][8]
- ^ Sloane, N. J. A. (ed.). "Sequence A005153 (Practical numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000078 (Tetranacci numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Waddill, Marcellus E. (1992), "The Tetranacci sequence and generalizations" (PDF), The Fibonacci Quarterly, 30 (1): 9–20, doi:10.1080/00150517.1992.12429379, MR 1146535.
- ^ Sloane, N. J. A. (ed.). "Sequence A045944 (Rhombic matchstick numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A005224 (T is the first, fourth, eleventh, ... letter in this sentence, not counting spaces or commas (Aronson's sequence))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A001868 (Number of n-bead necklaces with 4 colors)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A004121 (Generalized weak orders on n points)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Wagner, Carl G. (1982), "Enumeration of generalized weak orders", Archiv der Mathematik, 39 (2): 147–152, doi:10.1007/BF01899195, MR 0675654, S2CID 8263031.