5-orthoplex

Regular 5-orthoplex
(pentacross)

Orthogonal projection
inside Petrie polygon
Type Regular 5-polytope
Family orthoplex
Schläfli symbol {3,3,3,4}
{3,3,31,1}
Coxeter-Dynkin diagrams
4-faces 32 {33}
Cells 80 {3,3}
Faces 80 {3}
Edges 40
Vertices 10
Vertex figure
16-cell
Petrie polygon decagon
Coxeter groups BC5, [3,3,3,4]
D5, [32,1,1]
Dual 5-cube
Properties convex, Hanner polytope

In five-dimensional geometry, a 5-orthoplex, or 5-cross polytope, is a five-dimensional polytope with 10 vertices, 40 edges, 80 triangle faces, 80 tetrahedron cells, 32 5-cell 4-faces.

It has two constructed forms, the first being regular with Schläfli symbol {33,4}, and the second with alternately labeled (checkerboarded) facets, with Schläfli symbol {3,3,31,1} or Coxeter symbol 211.

It is a part of an infinite family of polytopes, called cross-polytopes or orthoplexes. The dual polytope is the 5-hypercube or 5-cube.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by razib.in