In the field of artificial intelligence (AI), AI alignment aims to steer AI systems toward a person's or group's intended goals, preferences, or ethical principles. An AI system is considered aligned if it advances the intended objectives. A misaligned AI system pursues unintended objectives.[1]
It is often challenging for AI designers to align an AI system because it is difficult for them to specify the full range of desired and undesired behaviors. Therefore, AI designers often use simpler proxy goals, such as gaining human approval. But proxy goals can overlook necessary constraints or reward the AI system for merely appearing aligned.[1][2]
Misaligned AI systems can malfunction and cause harm. AI systems may find loopholes that allow them to accomplish their proxy goals efficiently but in unintended, sometimes harmful, ways (reward hacking).[1][3][4] They may also develop unwanted instrumental strategies, such as seeking power or survival because such strategies help them achieve their final given goals.[1][5][6] Furthermore, they might develop undesirable emergent goals that could be hard to detect before the system is deployed and encounters new situations and data distributions.[7][8] Empirical research showed in 2024 that advanced large language models can occasionally engage in strategic deception in order to achieve their goals or protect their values.[9][10]
Today, some of these issues affect existing commercial systems such as large language models,[11][12][13]robots,[14]autonomous vehicles,[15] and social media recommendation engines.[11][6][16] Some AI researchers argue that more capable future systems will be more severely affected because these problems partially result from high capabilities.[17][3][2]
^ abNgo, Richard; Chan, Lawrence; Mindermann, Sören (2022). "The Alignment Problem from a Deep Learning Perspective". International Conference on Learning Representations. arXiv:2209.00626.
^Zhuang, Simon; Hadfield-Menell, Dylan (2020). "Consequences of Misaligned AI". Advances in Neural Information Processing Systems. Vol. 33. Curran Associates, Inc. pp. 15763–15773. Retrieved March 11, 2023.
^Carlsmith, Joseph (June 16, 2022). "Is Power-Seeking AI an Existential Risk?". arXiv:2206.13353 [cs.CY].
^Langosco, Lauro Langosco Di; Koch, Jack; Sharkey, Lee D.; Pfau, Jacob; Krueger, David (June 28, 2022). "Goal Misgeneralization in Deep Reinforcement Learning". Proceedings of the 39th International Conference on Machine Learning. International Conference on Machine Learning. PMLR. pp. 12004–12019. Retrieved March 11, 2023.
^ abBommasani, Rishi; Hudson, Drew A.; Adeli, Ehsan; Altman, Russ; Arora, Simran; von Arx, Sydney; Bernstein, Michael S.; Bohg, Jeannette; Bosselut, Antoine; Brunskill, Emma; Brynjolfsson, Erik (July 12, 2022). "On the Opportunities and Risks of Foundation Models". Stanford CRFM. arXiv:2108.07258.
^Ouyang, Long; Wu, Jeff; Jiang, Xu; Almeida, Diogo; Wainwright, Carroll L.; Mishkin, Pamela; Zhang, Chong; Agarwal, Sandhini; Slama, Katarina; Ray, Alex; Schulman, J.; Hilton, Jacob; Kelton, Fraser; Miller, Luke E.; Simens, Maddie; Askell, Amanda; Welinder, P.; Christiano, P.; Leike, J.; Lowe, Ryan J. (2022). "Training language models to follow instructions with human feedback". arXiv:2203.02155 [cs.CL].
^Zaremba, Wojciech; Brockman, Greg; OpenAI (August 10, 2021). "OpenAI Codex". OpenAI. Archived from the original on February 3, 2023. Retrieved July 23, 2022.
^Grace, Katja; Stewart, Harlan; Sandkühler, Julia Fabienne; Thomas, Stephen; Weinstein-Raun, Ben; Brauner, Jan (January 5, 2024). "Thousands of AI Authors on the Future of AI". arXiv:2401.02843 [cs.CY].
^Wirth, Christian; Akrour, Riad; Neumann, Gerhard; Fürnkranz, Johannes (2017). "A survey of preference-based reinforcement learning methods". Journal of Machine Learning Research. 18 (136): 1–46.
^Christiano, Paul F.; Leike, Jan; Brown, Tom B.; Martic, Miljan; Legg, Shane; Amodei, Dario (2017). "Deep reinforcement learning from human preferences". Proceedings of the 31st International Conference on Neural Information Processing Systems. NIPS'17. Red Hook, NY, USA: Curran Associates Inc. pp. 4302–4310. ISBN978-1-5108-6096-4.