Allosteric regulation

Allosteric regulation of an enzyme

In biochemistry, allosteric regulation (or allosteric control) is the regulation of an enzyme by binding an effector molecule at a site other than the enzyme's active site.

The site to which the effector binds is termed the allosteric site or regulatory site. Allosteric sites allow effectors to bind to the protein, often resulting in a conformational change and/or a change in protein dynamics.[1][2] Effectors that enhance the protein's activity are referred to as allosteric activators, whereas those that decrease the protein's activity are called allosteric inhibitors.

Allosteric regulations are a natural example of control loops, such as feedback from downstream products or feedforward from upstream substrates. Long-range allostery is especially important in cell signaling.[3] Allosteric regulation is also particularly important in the cell's ability to adjust enzyme activity.

The term allostery comes from the Ancient Greek allos (ἄλλος), "other", and stereos (στερεός), "solid (object)". This is in reference to the fact that the regulatory site of an allosteric protein is physically distinct from its active site. Allostery contrasts with substrate presentation which requires no conformational change for an enzyme's activation.

  1. ^ Cooper A, Dryden DT (October 1984). "Allostery without conformational change. A plausible model". European Biophysics Journal. 11 (2): 103–109. doi:10.1007/BF00276625. PMID 6544679. S2CID 12591175.
  2. ^ Liu J, Nussinov R (June 2016). "Allostery: An Overview of Its History, Concepts, Methods, and Applications". PLOS Computational Biology. 12 (6): e1004966. Bibcode:2016PLSCB..12E4966L. doi:10.1371/journal.pcbi.1004966. PMC 4890769. PMID 27253437. S2CID 3610740.
  3. ^ Bu Z, Callaway DJ (2011). "Proteins move! Protein dynamics and long-range allostery in cell signaling". Protein Structure and Diseases. Advances in Protein Chemistry and Structural Biology. Vol. 83. pp. 163–221. doi:10.1016/B978-0-12-381262-9.00005-7. ISBN 9780123812629. PMID 21570668.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Tubidy