BPST instanton

The dx1⊗σ3 coefficient of BPST instanton on the (x1,x2)-slice of R4 where σ3 is the third Pauli matrix (top left). The dx2⊗σ3 coefficient (top right). These coefficients A13 and A23 determine the restriction of the BPST instanton A with g=2,ρ=1,z=0 to this slice. The corresponding field strength centered around z=0 (bottom left). A visual representation of the field strength of a BPST instanton with center z on the compactification S4 of R4 (bottom right).

In theoretical physics, the BPST instanton is the instanton with winding number 1 found by Alexander Belavin, Alexander Polyakov, Albert Schwarz and Yu. S. Tyupkin.[1] It is a classical solution to the equations of motion of SU(2) Yang–Mills theory in Euclidean space-time (i.e. after Wick rotation), meaning it describes a transition between two different topological vacua of the theory. It was originally hoped to open the path to solving the problem of confinement, especially since Polyakov had proven in 1975 that instantons are the cause of confinement in three-dimensional compact-QED.[2] This hope was not realized, however.

  1. ^ Cite error: The named reference BPST was invoked but never defined (see the help page).
  2. ^ Polyakov, Alexander (1975). "Compact gauge fields and the infrared catastrophe". Phys. Lett. B. 59 (1): 82–84. Bibcode:1975PhLB...59...82P. doi:10.1016/0370-2693(75)90162-8.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Tubidy