Clock skew (sometimes called timing skew) is a phenomenon in synchronous digital circuit systems (such as computer systems) in which the same sourced clock signal arrives at different components at different times due to gate or, in more advanced semiconductor technology, wire signal propagation delay. The instantaneous difference between the readings of any two clocks is called their skew.
The operation of most digital circuits is synchronized by a periodic signal known as a "clock" that dictates the sequence and pacing of the devices on the circuit. This clock is distributed from a single source to all the memory elements of the circuit, which for example could be registers or flip-flops. In a circuit using edge-triggered registers, when the clock edge or tick arrives at a register, the register transfers the register input to the register output, and these new output values flow through combinational logic to provide the values at register inputs for the next clock tick.
Ideally, the input to each memory element reaches its final value in time for the next clock tick so that the behavior of the whole circuit can be predicted exactly. The maximum speed at which a system can run must account for the variance that occurs between the various elements of a circuit due to differences in physical composition, temperature, and path length.
In a synchronous circuit, two registers, or flip-flops, are said to be "sequentially adjacent" if a logic path connects them. Given two sequentially adjacent registers Ri and Rj with clock arrival times at the source and destination register clock pins equal to TCi and TCj respectively, clock skew can be defined as: Tskew i, j = TCi − TCj.