Cyclic glycine-proline

Cyclic glycine-proline
Names
IUPAC name
(8aS)-2,3,6,7,8,8a-Hexahydropyrrolo[1,2-a]pyrazine-1,4-dione
Other names
Cyclo(Gly-Pro); Cyclo-Gly-Pro; Cyclo(prolylglycyl); cGP
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
DrugBank
UNII
  • InChI=1S/C7H10N2O2/c10-6-4-8-7(11)5-2-1-3-9(5)6/h5H,1-4H2,(H,8,11)/t5-/m0/s1
    Key: OWOHLURDBZHNGG-YFKPBYRVSA-N
  • C1C[C@H]2C(=O)NCC(=O)N2C1
Properties
C7H10N2O2
Molar mass 154.169 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Cyclic glycine-proline (cGP) is a small neuroactive peptide that belongs to a group of bioactive 2,5-diketopiperazines (2,5-DKPs) and is also known as cyclo-glycine-proline. cGP is a neutral, stable naturally occurring compound and is endogenous to the human body; found in human plasma, breast milk and cerebrospinal fluid. DKPs are bioactive compounds often found in foods. Cyclic dipeptides such as 2,5 DKPs are formed by the cyclisation of two amino acids of linear peptides produced in heated or fermented foods.[1] The bioactivity of cGP is a property of functional foods and presents in several matrices of foods including blackcurrants.[2]

cGP is metabolite of hormone insulin-like growth factor-1 (IGF-1). It has a cyclic structure, lipophilic nature, and is enzymatically stable which makes its a more favorable candidate for manipulating the binding-release process between IGF-1 and its binding protein thereby, normalizing IGF-1 function.[3]

  1. ^ Otsuka, Yuuki; Arita, Hikaru; Sakaji, Michio; Yamamoto, Kenji; Kashiwagi, Takehiro; Shimamura, Tomoko; Ukeda, Hiroyuki (2 December 2019). "Investigation of the formation mechanism of proline-containing cyclic dipeptide from the linear peptide". Bioscience, Biotechnology, and Biochemistry. 83 (12): 2355–2363. doi:10.1080/09168451.2019.1659718. PMID 31462170. S2CID 201663846.
  2. ^ Fan, Dawei; Alamri, Yassar; Liu, Karen; MacAskill, Michael; Harris, Paul; Brimble, Margaret; Dalrymple-Alford, John; Prickett, Tim; Menzies, Oliver; Laurenson, Andrew; Anderson, Tim; Guan, Jian (2 June 2018). "Supplementation of Blackcurrant Anthocyanins Increased Cyclic Glycine-Proline in the Cerebrospinal Fluid of Parkinson Patients: Potential Treatment to Improve Insulin-Like Growth Factor-1 Function". Nutrients. 10 (6): 714. doi:10.3390/nu10060714. PMC 6024688. PMID 29865234.
  3. ^ Tran, Loi Hung (June 19, 2007). "US Patent # 7232798: Neuroprotection and neurogenesis by administering cyclic prolyl glycine". US Patent Trademark Office (Priority date: Nov 13, 2001): Filing date: Nov 12, 2002.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by razib.in