Doubling time

The doubling time is the time it takes for a population to double in size/value. It is applied to population growth, inflation, resource extraction, consumption of goods, compound interest, the volume of malignant tumours, and many other things that tend to grow over time. When the relative growth rate (not the absolute growth rate) is constant, the quantity undergoes exponential growth and has a constant doubling time or period, which can be calculated directly from the growth rate.

This time can be calculated by dividing the natural logarithm of 2 by the exponent of growth, or approximated by dividing 70 by the percentage growth rate[1] (more roughly but roundly, dividing 72; see the rule of 72 for details and derivations of this formula).

The doubling time is a characteristic unit (a natural unit of scale) for the exponential growth equation, and its converse for exponential decay is the half-life.

As an example, Canada's net population growth was 2.7 percent in the year 2022, dividing 72 by 2.7 gives an approximate doubling time of about 27 years. Thus if that growth rate were to remain constant, Canada's population would double from its 2023 figure of about 39 million to about 78 million by 2050. [2]

  1. ^ Donella Meadows, Thinking in Systems: A Primer, Chelsea Green Publishing, 2008, page 33 (box "Hint on reinforcing feedback loops and doubling time").
  2. ^ "The Daily — Canada's population estimates: Record-high population growth in 2022". 22 March 2023.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by razib.in