Drag coefficient

Drag coefficients in fluids with Reynolds number approximately 104[1][2] Shapes are depicted with the same projected frontal area

In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water. It is used in the drag equation in which a lower drag coefficient indicates the object will have less aerodynamic or hydrodynamic drag. The drag coefficient is always associated with a particular surface area.[3]

The drag coefficient of any object comprises the effects of the two basic contributors to fluid dynamic drag: skin friction and form drag. The drag coefficient of a lifting airfoil or hydrofoil also includes the effects of lift-induced drag.[4][5] The drag coefficient of a complete structure such as an aircraft also includes the effects of interference drag.[6][7]

  1. ^ Baker, W.E. (1983). Explosion Hazards and Evaluation, Volume 5. Elsevier Science. ISBN 978-0-444-59988-9.
  2. ^ AARØNÆS, ANTON STADE (2014). Dynamic response of pipe rack steel structures to explosion loads (PDF). CHALMERS UNIVERSITY OF TECHNOLOGY.
  3. ^ McCormick, Barnes W. (1979). Aerodynamics, Aeronautics, and Flight Mechanics. New York: John Wiley & Sons, Inc. p. 24. ISBN 0-471-03032-5.
  4. ^ Clancy, L. J. (1975). "5.18". Aerodynamics. Wiley. ISBN 978-0-470-15837-1.
  5. ^ Abbott, Ira H., and Von Doenhoff, Albert E.: Theory of Wing Sections. Sections 1.2 and 1.3
  6. ^ "Modern Drag Equation". Wright.nasa.gov. 2010-03-25. Archived from the original on 2011-03-02. Retrieved 2010-12-07.
  7. ^ Clancy, L. J.: Aerodynamics. Section 11.17

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by razib.in