Falling and rising factorials

In mathematics, the falling factorial (sometimes called the descending factorial,[1] falling sequential product, or lower factorial) is defined as the polynomial

The rising factorial (sometimes called the Pochhammer function, Pochhammer polynomial, ascending factorial,[1] rising sequential product, or upper factorial) is defined as

The value of each is taken to be 1 (an empty product) when . These symbols are collectively called factorial powers.[2]

The Pochhammer symbol, introduced by Leo August Pochhammer, is the notation , where n is a non-negative integer. It may represent either the rising or the falling factorial, with different articles and authors using different conventions. Pochhammer himself actually used with yet another meaning, namely to denote the binomial coefficient .[3]

In this article, the symbol is used to represent the falling factorial, and the symbol is used for the rising factorial. These conventions are used in combinatorics,[4] although Knuth's underline and overline notations and are increasingly popular.[2][5] In the theory of special functions (in particular the hypergeometric function) and in the standard reference work Abramowitz and Stegun, the Pochhammer symbol is used to represent the rising factorial.[6][7]

When is a positive integer, gives the number of n-permutations (sequences of distinct elements) from an x-element set, or equivalently the number of injective functions from a set of size to a set of size . The rising factorial gives the number of partitions of an -element set into ordered sequences (possibly empty).[a]

  1. ^ a b Steffensen, J.F. (17 March 2006). Interpolation (2nd ed.). Dover Publications. p. 8. ISBN 0-486-45009-0. — A reprint of the 1950 edition by Chelsea Publishing.
  2. ^ a b Knuth, D.E. The Art of Computer Programming. Vol. 1 (3rd ed.). p. 50.
  3. ^ Knuth, D.E. (1992). "Two notes on notation". American Mathematical Monthly. 99 (5): 403–422. arXiv:math/9205211. doi:10.2307/2325085. JSTOR 2325085. S2CID 119584305. The remark about the Pochhammer symbol is on page 414.
  4. ^ Olver, P.J. (1999). Classical Invariant Theory. Cambridge University Press. p. 101. ISBN 0-521-55821-2. MR 1694364.
  5. ^ Harris; Hirst; Mossinghoff (2008). Combinatorics and Graph Theory. Springer. ch. 2. ISBN 978-0-387-79710-6.
  6. ^ Abramowitz, Milton; Stegun, Irene A., eds. (December 1972) [June 1964]. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series. Vol. 55. Washington, DC: United States Department of Commerce. p. 256 eqn. 6.1.22. LCCN 64-60036.
  7. ^ Slater, Lucy J. (1966). Generalized Hypergeometric Functions. Cambridge University Press. Appendix I. MR 0201688. — Gives a useful list of formulas for manipulating the rising factorial in (x)n notation.


Cite error: There are <ref group=lower-alpha> tags or {{efn}} templates on this page, but the references will not show without a {{reflist|group=lower-alpha}} template or {{notelist}} template (see the help page).


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Tubidy