Feature learning

Diagram of the feature learning paradigm in ML for application to downstream tasks, which can be applied to either raw data such as images or text, or to an initial set of features of the data. Feature learning is intended to result in faster training or better performance in task-specific settings than if the data was input directly (compare transfer learning).[1]

In machine learning (ML), feature learning or representation learning[2] is a set of techniques that allow a system to automatically discover the representations needed for feature detection or classification from raw data. This replaces manual feature engineering and allows a machine to both learn the features and use them to perform a specific task.

Feature learning is motivated by the fact that ML tasks such as classification often require input that is mathematically and computationally convenient to process. However, real-world data, such as image, video, and sensor data, have not yielded to attempts to algorithmically define specific features. An alternative is to discover such features or representations through examination, without relying on explicit algorithms.

Feature learning can be either supervised, unsupervised, or self-supervised:

  1. ^ Goodfellow, Ian (2016). Deep learning. Yoshua Bengio, Aaron Courville. Cambridge, Massachusetts. pp. 524–534. ISBN 0-262-03561-8. OCLC 955778308.
  2. ^ Y. Bengio; A. Courville; P. Vincent (2013). "Representation Learning: A Review and New Perspectives". IEEE Transactions on Pattern Analysis and Machine Intelligence. 35 (8): 1798–1828. arXiv:1206.5538. doi:10.1109/tpami.2013.50. PMID 23787338. S2CID 393948.
  3. ^ Stuart J. Russell, Peter Norvig (2010) Artificial Intelligence: A Modern Approach, Third Edition, Prentice Hall ISBN 978-0-13-604259-4.
  4. ^ Hinton, Geoffrey; Sejnowski, Terrence (1999). Unsupervised Learning: Foundations of Neural Computation. MIT Press. ISBN 978-0-262-58168-4.
  5. ^ Nathan Srebro; Jason D. M. Rennie; Tommi S. Jaakkola (2004). Maximum-Margin Matrix Factorization. NIPS.
  6. ^ Cite error: The named reference coates2011 was invoked but never defined (see the help page).
  7. ^ Csurka, Gabriella; Dance, Christopher C.; Fan, Lixin; Willamowski, Jutta; Bray, Cédric (2004). Visual categorization with bags of keypoints (PDF). ECCV Workshop on Statistical Learning in Computer Vision.
  8. ^ Daniel Jurafsky; James H. Martin (2009). Speech and Language Processing. Pearson Education International. pp. 145–146.
  9. ^ a b Ericsson, Linus; Gouk, Henry; Loy, Chen Change; Hospedales, Timothy M. (May 2022). "Self-Supervised Representation Learning: Introduction, advances, and challenges". IEEE Signal Processing Magazine. 39 (3): 42–62. arXiv:2110.09327. Bibcode:2022ISPM...39c..42E. doi:10.1109/MSP.2021.3134634. ISSN 1558-0792. S2CID 239017006.
  10. ^ Mikolov, Tomas; Sutskever, Ilya; Chen, Kai; Corrado, Greg S; Dean, Jeff (2013). "Distributed Representations of Words and Phrases and their Compositionality". Advances in Neural Information Processing Systems. 26. Curran Associates, Inc. arXiv:1310.4546.
  11. ^ Goodfellow, Ian (2016). Deep learning. Yoshua Bengio, Aaron Courville. Cambridge, Massachusetts. pp. 499–516. ISBN 0-262-03561-8. OCLC 955778308.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by razib.in