Glycosyltransferase

Most glycosyltransferase enzymes form one of two folds: GT-A or GT-B

Glycosyltransferases (GTFs, Gtfs) are enzymes (EC 2.4) that establish natural glycosidic linkages. They catalyze the transfer of saccharide moieties from an activated nucleotide sugar (also known as the "glycosyl donor") to a nucleophilic glycosyl acceptor molecule, the nucleophile of which can be oxygen- carbon-, nitrogen-, or sulfur-based.[1]

The result of glycosyl transfer can be a carbohydrate, glycoside, oligosaccharide, or a polysaccharide. Some glycosyltransferases catalyse transfer to inorganic phosphate or water. Glycosyl transfer can also occur to protein residues, usually to tyrosine, serine, or threonine to give O-linked glycoproteins, or to asparagine to give N-linked glycoproteins. Mannosyl groups may be transferred to tryptophan to generate C-mannosyl tryptophan, which is relatively abundant in eukaryotes. Transferases may also use lipids as an acceptor, forming glycolipids, and even use lipid-linked sugar phosphate donors, such as dolichol phosphates in eukaryotic organism, or undecaprenyl phosphate in bacteria.

Glycosyltransferases that use sugar nucleotide donors are Leloir enzymes, after Luis F. Leloir, the scientist who discovered the first sugar nucleotide and who received the 1970 Nobel Prize in Chemistry for his work on carbohydrate metabolism. Glycosyltransferases that use non-nucleotide donors such as dolichol or polyprenol pyrophosphate are non-Leloir glycosyltransferases.

Mammals use only 9 sugar nucleotide donors for glycosyltransferases:[2] UDP-glucose, UDP-galactose, UDP-GlcNAc, UDP-GalNAc, UDP-xylose, UDP-glucuronic acid, GDP-mannose, GDP-fucose, and CMP-sialic acid. The phosphate(s) of these donor molecules are usually coordinated by divalent cations such as manganese, however metal independent enzymes exist.

Many glycosyltransferases are single-pass transmembrane proteins, and they are usually anchored to membranes of Golgi apparatus[3]

  1. ^ Williams, GJ; Thorson, JS (2009). "Natural Product Glycosyltransferases: Properties and Applications". Advances in Enzymology. Advances in Enzymology - and Related Areas of Molecular Biology. Vol. 76. pp. 55–119. doi:10.1002/9780470392881.ch2. ISBN 9780470392881. PMID 18990828.
  2. ^ Etzler ME, Varki A, Cummings RL, Esko JD, Freeze HH, Hart GW, eds. (2008). Essentials of Glycobiology (2nd ed.). Plainview, N.Y: Cold Spring Harbor Laboratory Press. ISBN 978-0-87969-770-9.
  3. ^ Transferases in Membranome database.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by razib.in