Hemagglutination assay

Hemagglutination assay of different influenza samples diluted from the left to the right.
Indirect hemagglutination assay for human echinococcosis. Different serum samples diluted from the left to the right. Seropositivity was suspected in Sample 179

The hemagglutination assay or haemagglutination assay (HA) and the hemagglutination inhibition assay (HI or HAI) were developed in 1941–42 by American virologist George Hirst as methods for quantifying the relative concentration of viruses, bacteria, or antibodies.[1]

HA and HAI apply the process of hemagglutination, in which sialic acid receptors on the surface of red blood cells (RBCs) bind to the hemagglutinin glycoprotein found on the surface of influenza virus (and several other viruses) and create a network, or lattice structure, of interconnected RBCs and virus particles.[2] The agglutinated lattice maintains the RBCs in a suspended distribution, typically viewed as a diffuse reddish solution. The formation of the lattice depends on the concentrations of the virus and RBCs, and when the relative virus concentration is too low, the RBCs are not constrained by the lattice and settle to the bottom of the well. Hemagglutination is observed in the presence of staphylococci, vibrios, and other bacterial species, similar to the mechanism viruses use to cause agglutination of erythrocytes.[3][4] The RBCs used in HA and HI assays are typically from chickens, turkeys, horses, guinea pigs, or humans depending on the selectivity of the targeted virus or bacterium and the associated surface receptors on the RBC.

  1. ^ Hirst, GK (1942). "The quantitative determination of Influenza virus and antibodies by means of red cell agglutination". J Exp Med. 75 (1): 49–64. doi:10.1084/jem.75.1.49. PMC 2135212. PMID 19871167.
  2. ^ "Antigenic Characterization-Flu Activity & Surveillance- Seasonal Influenza (Flu)". CDC. 2019-10-15.
  3. ^ Neter, E; Gorzynski, EA; Zalewski, J; Rachman, R; Gino, RM (1954). "Studies on Bacterial Hemagglutination". American Journal of Public Health. 44 (1): 49–54. doi:10.2105/ajph.44.1.49. PMC 1620628. PMID 13114484.
  4. ^ Neter, E (1956). "Bacterial Hemagglutination and Hemolysis". Statler Research Laboratories and Department of Pediatrics, Children's Hospital, Laboratory of Bacteriology, Roswell Park Memorial Institute, and Departments of Pediatrics and Bacteriology, University of Buffalo, School of Medicine, Buffalo, New York. 20 (3): 166–182. doi:10.1128/br.20.3.166-188.1956. PMC 180858. PMID 13363771.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Tubidy