Hornfels

A sample of banded hornfels, formed by contact metamorphism of sandstones and shales by a granite intrusion

Hornfels is the group name for a set of contact metamorphic rocks that have been baked and hardened by the heat of intrusive igneous masses and have been rendered massive, hard, splintery, and in some cases exceedingly tough and durable.[1] These properties are caused by fine grained non-aligned crystals with platy or prismatic habits, characteristic of metamorphism at high temperature but without accompanying deformation.[2][3][4] The term is derived from the German word Hornfels, meaning "hornstone", because of its exceptional toughness and texture both reminiscent of animal horns. These rocks were referred to by miners in northern England as whetstones.[5][6]

Most hornfels are fine-grained, and while the original rocks (such as sandstone, shale, slate and limestone) may have been more or less fissile owing to the presence of bedding or cleavage planes, this structure is effaced or rendered inoperative in the hornfels. Though many hornfels show vestiges of the original bedding,[2] they break across this as readily as along it; in fact, they tend to separate into cubical fragments rather than into thin plates.[1] Sheet minerals may be abundant but are aligned at random.[7]

Hornfels most commonly form in the aureole of granitic intrusions in the upper or middle crust. Hornfels formed from contact metamorphism by volcanic activity very close to the surface can produce unusual and distinctive minerals.[2][3] Changes in composition caused by fluids given off by the magmatic body (metasomatism) sometimes take place.[8] The hornfels facies is the metamorphic facies which occupies the lowest pressure portion of the metamorphic pressure-temperature space.[9]

The most common hornfels (the biotite hornfels) are dark-brown to black with a somewhat velvety luster owing to the abundance of small crystals of shining black mica. Also, most common hornfels have a black streak. The lime hornfels are often white, yellow, pale-green, brown and other colors. Green and dark-green are the prevalent tints of the hornfels produced by the alteration of igneous rocks. Although for the most part the constituent grains are too small to be determined by the unaided eye, there are often larger crystals (porphyroblasts) of cordierite, garnet or andalusite scattered through the fine matrix, and these may become very prominent on the weathered faces of the rock.[1][10]

  1. ^ a b c One or more of the preceding sentences incorporates text from a publication now in the public domainFlett, John Smith (1911). "Hornfels". In Chisholm, Hugh (ed.). Encyclopædia Britannica. Vol. 13 (11th ed.). Cambridge University Press. pp. 710–711.
  2. ^ a b c Yardley, Bruce W.D. (1989). An introduction to metamorphic petrology. Harlow, Essex, England: Longman Scientific & Technical. pp. 12, 26. ISBN 0582300967.
  3. ^ a b Blatt, Harvey; Tracy, Robert J. (1996). Petrology : igneous, sedimentary, and metamorphic (2nd ed.). New York: W.H. Freeman. pp. 367, 512. ISBN 0716724383.
  4. ^ Philpotts, Anthony R.; Ague, Jay J. (2009). Principles of igneous and metamorphic petrology (2nd ed.). Cambridge, UK: Cambridge University Press. pp. 422, 428. ISBN 9780521880060.
  5. ^ "Holwick Scar & Low Force : Pamphlet" (PDF). Explorenorthpennines.org.uk. Retrieved 2015-03-17.
  6. ^ Lawrence, D. J. D et al 2004 Durham Geodiversity Audit, Durham: Durham County Council p20
  7. ^ Nesse, William D. (2000). Introduction to mineralogy. New York: Oxford University Press. p. 195. ISBN 9780195106916.
  8. ^ Harry, W. T. (December 1952). "Basic hornfels at a gabbro contact near Carlingford, Eire". Geological Magazine. 89 (6): 411–416. Bibcode:1952GeoM...89..411H. doi:10.1017/S0016756800068114.
  9. ^ Blatt and Tracy, p.378-380, 512
  10. ^ Yardley 1989, p.161

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Tubidy