Ivacaftor

Ivacaftor
Clinical data
Pronunciation/ˌvəˈkæftər/
EYE-və-KAF-tər
Trade namesKalydeco
Other namesVX-770
AHFS/Drugs.comMonograph
MedlinePlusa612012
License data
Pregnancy
category
Routes of
administration
By mouth
ATC code
Legal status
Legal status
Pharmacokinetic data
Protein binding99%
MetabolismCYP3A
Elimination half-life12 hrs (single dose)
Excretion88% faeces
Identifiers
  • N-(2,4-Di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard100.226.211 Edit this at Wikidata
Chemical and physical data
FormulaC24H28N2O3
Molar mass392.499 g·mol−1
3D model (JSmol)
  • O=C\2c1c(cccc1)N/C=C/2C(=O)Nc3cc(O)c(cc3C(C)(C)C)C(C)(C)C
  • InChI=1S/C24H28N2O3/c1-23(2,3)16-11-17(24(4,5)6)20(27)12-19(16)26-22(29)15-13-25-18-10-8-7-9-14(18)21(15)28/h7-13,27H,1-6H3,(H,25,28)(H,26,29) checkY
  • Key:PURKAOJPTOLRMP-UHFFFAOYSA-N checkY
 ☒NcheckY (what is this?)  (verify)

Ivacaftor is a medication used to treat cystic fibrosis in people with certain mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene (primarily the G551D mutation), who account for 4–5% cases of cystic fibrosis.[5][6] It is also included in combination medications, lumacaftor/ivacaftor, tezacaftor/ivacaftor, and elexacaftor/tezacaftor/ivacaftor which are used to treat people with cystic fibrosis.[7][8][9]

Ivacaftor was developed by Vertex Pharmaceuticals in conjunction with the Cystic Fibrosis Foundation and is the first medication that treats the underlying cause rather than the symptoms of the disease. It was approved by the U.S. Food and Drug Administration (FDA) in January 2012. It is one of the most expensive drugs, costing over US$300,000 per year, which has led to criticism of the high cost. The combination drug lumacaftor/ivacaftor was approved by the FDA in July 2015.

Cystic fibrosis is caused by any one of several defects in the CFTR protein, which regulates fluid flow within cells and affects the components of sweat, digestive fluids, and mucus. One such defect is the G551D mutation, in which the amino acid glycine (G) in position 551 is replaced with aspartic acid (D). G551D is characterized by a dysfunctional CFTR protein on the cell surface. In the case of G551D, the protein is trafficked to the correct area, the epithelial cell surface, but once there the protein cannot transport chloride through the channel. Ivacaftor, a CFTR potentiator, improves the transport of chloride through the ion channel by binding to the channels directly to induce a non-conventional mode of gating which in turn increases the probability that the channel is open.[10][11][12]

  1. ^ "Ivacaftor (Kalydeco) Use During Pregnancy". Drugs.com. 9 November 2019. Retrieved 26 June 2020.
  2. ^ "Kalydeco Product information". Health Canada. 25 April 2012. Retrieved 31 May 2022.
  3. ^ Cite error: The named reference Kalydeco label was invoked but never defined (see the help page).
  4. ^ Cite error: The named reference Kalydeco EPAR was invoked but never defined (see the help page).
  5. ^ Jones AM, Helm JM (October 2009). "Emerging treatments in cystic fibrosis". Drugs. 69 (14): 1903–1910. doi:10.2165/11318500-000000000-00000. PMID 19747007. S2CID 23344660.
  6. ^ McPhail GL, Clancy JP (April 2013). "Ivacaftor: the first therapy acting on the primary cause of cystic fibrosis". Drugs of Today. 49 (4): 253–260. doi:10.1358/dot.2013.49.4.1940984. PMID 23616952.
  7. ^ Cite error: The named reference Orkambi Label was invoked but never defined (see the help page).
  8. ^ Cite error: The named reference Symdeko label was invoked but never defined (see the help page).
  9. ^ Cite error: The named reference Symkevi EPAR was invoked but never defined (see the help page).
  10. ^ Eckford PD, Li C, Ramjeesingh M, Bear CE (October 2012). "Cystic fibrosis transmembrane conductance regulator (CFTR) potentiator VX-770 (ivacaftor) opens the defective channel gate of mutant CFTR in a phosphorylation-dependent but ATP-independent manner". The Journal of Biological Chemistry. 287 (44): 36639–36649. doi:10.1074/jbc.M112.393637. PMC 3481266. PMID 22942289.
  11. ^ Van Goor F, Hadida S, Grootenhuis PD, Burton B, Cao D, Neuberger T, et al. (November 2009). "Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770". Proceedings of the National Academy of Sciences of the United States of America. 106 (44): 18825–18830. Bibcode:2009PNAS..10618825V. doi:10.1073/pnas.0904709106. PMC 2773991. PMID 19846789.
  12. ^ Sloane PA, Rowe SM (November 2010). "Cystic fibrosis transmembrane conductance regulator protein repair as a therapeutic strategy in cystic fibrosis". Current Opinion in Pulmonary Medicine. 16 (6): 591–597. doi:10.1097/MCP.0b013e32833f1d00. PMC 3733473. PMID 20829696.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Tubidy