Launched | April 3, 2012 |
---|---|
Designed by | Nvidia |
Manufactured by | |
Fabrication process | TSMC 28 nm |
Product Series | |
Desktop | |
Professional/workstation | |
Server/datacenter | |
Specifications | |
L1 cache | 16 KB (per SM) |
L2 cache | Up to 512 KB |
Memory support | GDDR5 |
PCIe support | PCIe 2.0 PCIe 3.0 |
Supported Graphics APIs | |
DirectX | DirectX 12 Ultimate (Feature Level 11_0) |
Shader Model | Shader Model 6.5 |
Vulkan | Vulkan 1.2 |
Media Engine | |
Encode codecs | H.264 |
Decode codecs | |
Encoder(s) supported | NVENC |
Display outputs | DVI DisplayPort 1.2 HDMI 1.4a |
History | |
Predecessor | Fermi |
Successor | Maxwell |
Kepler is the codename for a GPU microarchitecture developed by Nvidia, first introduced at retail in April 2012,[1] as the successor to the Fermi microarchitecture. Kepler was Nvidia's first microarchitecture to focus on energy efficiency. Most GeForce 600 series, most GeForce 700 series, and some GeForce 800M series GPUs were based on Kepler, all manufactured in 28 nm. Kepler found use in the GK20A, the GPU component of the Tegra K1 SoC, and in the Quadro Kxxx series, the Quadro NVS 510, and Tesla computing modules.
Kepler was followed by the Maxwell microarchitecture and used alongside Maxwell in the GeForce 700 series and GeForce 800M series.
The architecture is named after Johannes Kepler, a German mathematician and key figure in the 17th century scientific revolution.