Lambert's cosine law

In optics, Lambert's cosine law says that the radiant intensity or luminous intensity observed from an ideal diffusely reflecting surface or ideal diffuse radiator is directly proportional to the cosine of the angle θ between the observer's line of sight and the surface normal; I = I0 cos θ.[1][2] The law is also known as the cosine emission law[3] or Lambert's emission law. It is named after Johann Heinrich Lambert, from his Photometria, published in 1760.[4]

A surface which obeys Lambert's law is said to be Lambertian, and exhibits Lambertian reflectance. Such a surface has the same radiance/luminance when viewed from any angle. This means, for example, that to the human eye it has the same apparent brightness. It has the same radiance because, although the emitted power from a given area element is reduced by the cosine of the emission angle, the solid angle, subtended by surface visible to the viewer, is reduced by the very same amount. Because the ratio between power and solid angle is constant, radiance (power per unit solid angle per unit projected source area) stays the same.

  1. ^ RCA Electro-Optics Handbook, p.18 ff
  2. ^ Modern Optical Engineering, Warren J. Smith, McGraw-Hill, p. 228, 256
  3. ^ Pedrotti & Pedrotti (1993). Introduction to Optics. Prentice Hall. ISBN 0135015456.
  4. ^ Lambert, Johann Heinrich (1760). Photometria, sive de mensura et gradibus luminis, colorum et umbrae. Eberhard Klett.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Tubidy