Least-upper-bound property

Every non-empty subset of the real numbers which is bounded from above has a least upper bound.

In mathematics, the least-upper-bound property (sometimes called completeness, supremum property or l.u.b. property)[1] is a fundamental property of the real numbers. More generally, a partially ordered set X has the least-upper-bound property if every non-empty subset of X with an upper bound has a least upper bound (supremum) in X. Not every (partially) ordered set has the least upper bound property. For example, the set of all rational numbers with its natural order does not have the least upper bound property.

The least-upper-bound property is one form of the completeness axiom for the real numbers, and is sometimes referred to as Dedekind completeness.[2] It can be used to prove many of the fundamental results of real analysis, such as the intermediate value theorem, the Bolzano–Weierstrass theorem, the extreme value theorem, and the Heine–Borel theorem. It is usually taken as an axiom in synthetic constructions of the real numbers, and it is also intimately related to the construction of the real numbers using Dedekind cuts.

In order theory, this property can be generalized to a notion of completeness for any partially ordered set. A linearly ordered set that is dense and has the least upper bound property is called a linear continuum.

  1. ^ Bartle and Sherbert (2011) define the "completeness property" and say that it is also called the "supremum property". (p. 39)
  2. ^ Willard says that an ordered space "X is Dedekind complete if every subset of X having an upper bound has a least upper bound." (pp. 124-5, Problem 17E.)

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Tubidy