List of polyurethane applications

Polyurethane foam made with an aromatic isocyanate, which has been exposed to UV light. Readily apparent is the discoloration that occurs over time.
Custom-cast polyurethane objects

Polyurethane products have many uses. Over three quarters of the global consumption of polyurethane products is in the form of foams, with flexible and rigid types being roughly equal in market size. In both cases, the foam is usually behind other materials: flexible foams are behind upholstery fabrics in commercial and domestic furniture; rigid foams are between metal, or plastic walls/sheets of most refrigerators and freezers, or other surface materials in the case of thermal insulation panels in the construction sector. Its use in garments is growing: for example, in lining the cups of brassieres. Polyurethane is also used for moldings which include door frames, columns, balusters, window headers, pediments, medallions and rosettes.

Polyurethane formulations cover an extremely wide range of stiffness, hardness, and densities.[1] These materials include:

  • Low-density flexible foam used in upholstery, bedding, automotive and truck seating, and novel inorganic plant substrates for roof or wall gardens
  • Low density elastomers used in footwear
  • Hard solid plastics used as electronic instrument bezels and structural parts
  • Flexible plastics used as straps and bands
  • Cast and injection molded components for various markets – i.e., agriculture, military, automotive, industrial, etc.

Polyurethane foam is widely used in high resiliency flexible foam seating, rigid foam insulation panels, microcellular foam seals and gaskets, durable elastomeric wheels and tires, automotive suspension bushings, electrical potting compounds, seals, gaskets, carpet underlay, and hard plastic parts (such as for electronic instruments).

Applications of polyurethane materials, plotted by density and stiffness.
This repaired shoe is probably, like many shoes,[1] soled with polyurethane. PU soles may crumble due to hydrolysis.[2]
  1. ^ a b "One Material to Rule Them All – The polyurethane in the Footwear Industry". www.linkedin.com.
  2. ^ "Hydrolysis, The Crumbling of Shoe Soles explained | Safety Shoes and Gloves". www.safetyjogger.com.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Tubidy