Meteor

Meteor seen from the site of the Atacama Large Millimeter Array (ALMA)[1]

A meteor, known colloquially as a shooting star, is a glowing streak of a small body (usually meteoroid) going through Earth's atmosphere, after being heated to incandescence by collisions with air molecules in the upper atmosphere,[2][3][4] creating a streak of light via its rapid motion and sometimes also by shedding glowing material in its wake. Although a meteor may seem to be a few thousand feet from the Earth,[5] meteors typically occur in the mesosphere at altitudes from 76 to 100 km (250,000 to 330,000 ft).[6][7] The root word meteor comes from the Greek meteōros, meaning "high in the air".[3]

Millions of meteors occur in Earth's atmosphere daily. Most meteoroids that cause meteors are about the size of a grain of sand, i.e. they are usually millimeter-sized or smaller. Meteoroid sizes can be calculated from their mass and density which, in turn, can be estimated from the observed meteor trajectory in the upper atmosphere. [8] Meteors may occur in showers, which arise when Earth passes through a stream of debris left by a comet, or as "random" or "sporadic" meteors, not associated with a specific stream of space debris. A number of specific meteors have been observed, largely by members of the public and largely by accident, but with enough detail that orbits of the meteoroids producing the meteors have been calculated. The atmospheric velocities of meteors result from the movement of Earth around the Sun at about 30 km/s (67,000 mph),[9] the orbital speeds of meteoroids, and the gravity well of Earth.

Meteors become visible between about 75 to 120 km (47 to 75 mi) above Earth. They usually disintegrate at altitudes of 50 to 95 kilometres (31 to 59 mi).[10] Meteors have roughly a fifty percent chance of a daylight (or near daylight) collision with Earth. Most meteors are, however, observed at night, when darkness allows fainter objects to be recognized. For bodies with a size scale larger than 10 cm (3.9 in) to several meters meteor visibility is due to the atmospheric ram pressure (not friction) that heats the meteoroid so that it glows and creates a shining trail of gases and melted meteoroid particles. The gases include vaporised meteoroid material and atmospheric gases that heat up when the meteoroid passes through the atmosphere. Most meteors glow for about a second.

  1. ^ "Cosmic Fireball Falling Over ALMA". ESO Picture of the Week. Retrieved 10 April 2014.
  2. ^ "Glossary International Meteor Organization". International Meteor Organization (IMO). Retrieved 2011-09-16.
  3. ^ a b "meteor". Merriam-Webster Dictionary. Retrieved 2014-09-21.
  4. ^ Bronshten, V. A. (2012). Physics of Meteoric Phenomena. Science. Springer Science & Business Media. p. 358. ISBN 978-94-009-7222-3.
  5. ^ Bob King. (2016). Night Sky With Naked Eye: How to Find Planets, Constellations, Satellites and Other Night Sky Wonders Without a Telescope[ISBN missing][page needed]
  6. ^ Erickson, Philip J. "Millstone Hill UHF Meteor Observations: Preliminary Results". Archived from the original on 2016-03-05.
  7. ^ "Meteor FAQs: How high up do meteors occur?". American Meteor Society (AMS). Retrieved 2021-04-16.
  8. ^ Subasinghe, Dilini (2018). "Luminous Efficiency Estimates of Meteors". Astronomical Journal. 155 (2): 88. arXiv:1801.06123. doi:10.3847/1538-3881/aaa3e0. S2CID 118990427.
  9. ^ Williams, David R. (2004-09-01). "Earth Fact Sheet". NASA. Retrieved 2010-08-09.
  10. ^ Jenniskens, Peter (2006). Meteor Showers and their Parent Comets. New York: Cambridge University Press. p. 372. ISBN 978-0-521-85349-1.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by razib.in