Molten-Salt Reactor Experiment

MSRE plant diagram: (1) Reactor vessel, (2) Heat exchanger, (3) Fuel pump, (4) Freeze flange, (5) Thermal shield, (6) Coolant pump, (7) Radiator, (8) Coolant drain tank, (9) Fans, (10) Fuel drain tanks, (11) Flush tank, (12) Containment vessel, (13) Freeze valve. Also note Control area in upper left and Chimney upper right.

The Molten-Salt Reactor Experiment (MSRE) was an experimental molten-salt reactor research reactor at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. This technology was researched through the 1960s, the reactor was constructed by 1964, it went critical in 1965, and was operated until 1969.[1] The costs of a cleanup project were estimated at $130 million.

Initially designed for 15 MWth, the MSRE was operated at 7.4 MWth because of imprecise nuclear cross section data. It was a test reactor simulating the neutronic "kernel" of a type of inherently safer epithermal thorium breeder reactor called the liquid fluoride thorium reactor. It primarily used two fuels: first uranium-235 and later uranium-233. The latter 233UF4 was the result of breeding from thorium in other reactors. Since this was an engineering test, the large, expensive breeding blanket of thorium salt was omitted in favor of neutron measurements.

In the MSRE, the heat from the reactor core was shed via a cooling system using air blown over radiators. It is thought similar reactors could power high-efficiency heat engines such as closed-cycle gas turbines. The MSRE's piping, core vat and structural components were made from Hastelloy-N, and its moderator was a pyrolytic graphite core. The fuel for the MSRE was LiF-BeF2-ZrF4-UF4 (65-29.1-5-0.9 mole %). The secondary coolant was FLiBe (2LiF-BeF2), and it operated as hot as 650 °C and operated for the equivalent of about 1.5 years of full power operation.

The result promised to be a simple, reliable reactor. The purpose of the Molten-Salt Reactor Experiment was to demonstrate that some key features of the proposed molten-salt power reactors could be embodied in a practical reactor that could be operated safely and reliably and be maintained without excessive difficulty. For simplicity, it was to be a fairly small, one-fluid (i.e. non-breeding) reactor operating at 10 MWth or less, with heat rejection to the air via a secondary (fuel-free) salt.

  1. ^ Cite error: The named reference project_description was invoked but never defined (see the help page).

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Tubidy