Multi-junction solar cell

Black light test of Dawn's triple-junction gallium arsenide solar cells[1]

Multi-junction (MJ) solar cells are solar cells with multiple p–n junctions made of different semiconductor materials. Each material's p-n junction will produce electric current in response to different wavelengths of light. The use of multiple semiconducting materials allows the absorbance of a broader range of wavelengths, improving the cell's sunlight to electrical energy conversion efficiency.

Traditional single-junction cells have a maximum theoretical efficiency of 33.16%.[2] Theoretically, an infinite number of junctions would have a limiting efficiency of 86.8% under highly concentrated sunlight.[3]

As of 2024 the best lab examples of traditional crystalline silicon (c-Si) solar cells had efficiencies up to 27.1%,[4] while lab examples of multi-junction cells have demonstrated performance over 46% under concentrated sunlight.[5][6][7] Commercial examples of tandem cells are widely available at 30% under one-sun illumination,[8][9] and improve to around 40% under concentrated sunlight. However, this efficiency is gained at the cost of increased complexity and manufacturing price. To date, their higher price and higher price-to-performance ratio have limited their use to special roles, notably in aerospace where their high power-to-weight ratio is desirable. In terrestrial applications, these solar cells are emerging in concentrator photovoltaics (CPV), but cannot compete with single junction solar panels unless a higher power density is required.[10]

Tandem fabrication techniques have been used to improve the performance of existing designs. In particular, the technique can be applied to lower cost thin-film solar cells using amorphous silicon, as opposed to conventional crystalline silicon, to produce a cell with about 10% efficiency that is lightweight and flexible. This approach has been used by several commercial vendors,[11] but these products are currently limited to certain niche roles, like roofing materials.

  1. ^ "Dawn Solar Arrays". Dutch Space. 2007. Retrieved July 18, 2011.
  2. ^ Rühle, Sven (2016-02-08). "Tabulated Values of the Shockley–Queisser Limit for Single Junction Solar Cells". Solar Energy. 130: 139–147. Bibcode:2016SoEn..130..139R. doi:10.1016/j.solener.2016.02.015.
  3. ^ Green, Martin A. (2003). Third Generation Photovoltaics: Advanced Solar Energy Conversion. Springer. p. 65.
  4. ^ "Best Research-Cell Efficiency Chart". National Renewable Energy Laboratory. Archived from the original on March 14, 2023. Retrieved 2023-03-28.
  5. ^ Dimroth, Frank (2016). "Four-Junction Wafer Bonded Concentrator Solar Cells". IEEE Journal of Photovoltaics. 6: 343–349. doi:10.1109/jphotov.2015.2501729. S2CID 47576267.
  6. ^ "Solar Junction Breaks Concentrated Solar World Record with 43.5% Efficiency". Cnet.com.
  7. ^ Shahan, Zachary (May 31, 2012). "Sharp Hits Concentrator Solar Cell Efficiency Record, 43.5%". CleanTechnica.
  8. ^ "30.2 Percent Efficiency – New Record for Silicon-based Multi-junction Solar Cell". Fraunhofer ISE. 2016-11-09. Retrieved 2016-11-15.
  9. ^ "ZTJ Space Solar Cell" Archived 2011-09-28 at the Wayback Machine, emcore
  10. ^ "Concentrating Photovoltaic Technology" Archived 2011-08-22 at the Wayback Machine, NREL
  11. ^ "Uni-Solar Energy Production", Uni-Solar

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Tubidy