PANoptosis

PANoptosis is a prominent innate immune, inflammatory, and lytic cell death pathway initiated by innate immune sensors and driven by caspases and receptor-interacting protein kinases (RIPKs) through multiprotein PANoptosome complexes.[1][2] The assembly of the PANoptosome cell death complex occurs in response to germline-encoded pattern-recognition receptors (PRRs) sensing pathogens, including bacterial, viral, and fungal infections, as well as pathogen-associated molecular patterns, damage-associated molecular patterns, and cytokines that are released during infections, inflammatory conditions, and cancer.[1][3][4][5][6][7][8][9][10][11][12][13][14][15][16] Several PANoptosome complexes, such as the ZBP1-, AIM2-, RIPK1-, and NLRC5- and NLRP12-PANoptosomes, have been characterized so far.[1][17][18][19][20][21][22][23]

Emerging genetic, molecular, and biochemical studies have identified extensive crosstalk among the molecular components across various cell death pathways in response to a variety of pathogens and innate immune triggers.[3][4] Historically, inflammatory caspase-mediated pyroptosis  and RIPK-driven necroptosis were described as two major inflammatory cell death pathways. While the PANoptosis pathway has some molecular components in common with pyroptosis and necroptosis, as well as with the non-lytic apoptosis pathway, these mechanisms are separate processes that are associated with distinct triggers, protein complexes, and execution pathways.[2] Inflammasome-dependent pyroptosis involves inflammatory caspases, including caspase-1 and caspase-11 in mice, and caspases-1, -4, and -5 in humans, and is executed by gasdermin D.[24][25][26][27][28][29][30] In contrast, necroptosis occurs via RIPK1/3-mediated MLKL activation, which is downstream of caspase-8 inhibition.[31][32][33][34] On the other hand, PANoptosis is [TDK1] driven by caspases and RIPKs and is executed by gasdermins, MLKL, NINJ1, and potentially other yet to be identified molecules cleaved by caspases.[35][36][37][38][39][40][19][21] Moreover, caspase-8 is essential for cell death in PANoptosis[41][42] but needs to be inactivated or inhibited to induce necroptosis.[43][44]

Summary of the different morphologies, mechanisms and outcomes of apoptosis, pyroptosis, necroptosis, and PANoptosis

Characteristics Apoptosis Pyroptosis Necroptosis PANoptosis
Morphology Cell lysis No Yes Yes Yes
Pore formation No Yes Yes Yes
Mechanism Caspase activation Yes Yes No Yes
Gasdermin activation No Yes No Yes
RIPK1 Yes No Yes Yes
RIPK3 No No Yes Yes
Outcome IL-1b and IL-18 release No Yes No Possible
DAMP release No Yes Yes Yes
Inflammation No Yes Yes Yes
Programmed cell death Yes Yes Yes Yes
  1. ^ a b c "St. Jude finds NLRP12 as a new drug target for infection, inflammation and hemolytic diseases". www.stjude.org. Retrieved 2024-03-07.
  2. ^ a b Pandeya, Ankit; Kanneganti, Thirumala-Devi (January 2024). "Therapeutic potential of PANoptosis: innate sensors, inflammasomes, and RIPKs in PANoptosomes". Trends in Molecular Medicine. 30 (1): 74–88. doi:10.1016/j.molmed.2023.10.001. ISSN 1471-499X. PMC 10842719. PMID 37977994.
  3. ^ a b "Promising preclinical cancer therapy harnesses a newly discovered cell death pathway". www.stjude.org. Retrieved 2021-11-16.
  4. ^ a b "ZBP1 links interferon treatment and dangerous inflammatory cell death during COVID-19". www.stjude.org. Retrieved 2022-06-02.
  5. ^ "The PANoptosome: a new frontier in innate immune responses". www.stjude.org. Retrieved 2021-11-16.
  6. ^ "In the lab, St. Jude scientists identify possible COVID-19 treatment". www.stjude.org. Retrieved 2021-11-16.
  7. ^ "Discovering the secrets of the enigmatic caspase-6". www.stjude.org. Retrieved 2021-11-16.
  8. ^ "Breaking the dogma: Key cell death regulator has more than one way to get the job done". www.stjude.org. Retrieved 2021-11-16.
  9. ^ Kuriakose, Teneema; Man, Si Ming; Malireddi, R.K. Subbarao; Karki, Rajendra; Kesavardhana, Sannula; Place, David E.; Neale, Geoffrey; Vogel, Peter; Kanneganti, Thirumala-Devi (2016-08-05). "ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways". Science Immunology. 1 (2): aag2045. doi:10.1126/sciimmunol.aag2045. ISSN 2470-9468. PMC 5131924. PMID 27917412.
  10. ^ Karki, Rajendra; Sharma, Bhesh Raj; Lee, Ein; Banoth, Balaji; Malireddi, R.K. Subbarao; Samir, Parimal; Tuladhar, Shraddha; Mummareddy, Harisankeerth; Burton, Amanda R.; Vogel, Peter; Kanneganti, Thirumala-Devi (2020-06-18). "Interferon regulatory factor 1 regulates PANoptosis to prevent colorectal cancer". JCI Insight. 5 (12). doi:10.1172/jci.insight.136720. ISSN 2379-3708. PMC 7406299. PMID 32554929.
  11. ^ "Diet affects mix of intestinal bacteria and the risk of inflammatory bone disease". www.stjude.org. Retrieved 2020-09-11.
  12. ^ Malireddi, R. K. Subbarao; Karki, Rajendra; Sundaram, Balamurugan; Kancharana, Balabhaskararao; Lee, SangJoon; Samir, Parimal; Kanneganti, Thirumala-Devi (2021-07-21). "Inflammatory Cell Death, PANoptosis, Mediated by Cytokines in Diverse Cancer Lineages Inhibits Tumor Growth". ImmunoHorizons. 5 (7): 568–580. doi:10.4049/immunohorizons.2100059. ISSN 2573-7732. PMC 8522052. PMID 34290111.
  13. ^ Karki, Rajendra; Sharma, Bhesh Raj; Tuladhar, Shraddha; Williams, Evan Peter; Zalduondo, Lillian; Samir, Parimal; Zheng, Min; Sundaram, Balamurugan; Banoth, Balaji; Malireddi, R. K. Subbarao; Schreiner, Patrick; Neale, Geoffrey; Vogel, Peter; Webby, Richard; Kanneganti, Thirumala-Devi (2021-01-07). "Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes". Cell. 184 (1): 149–168.e17. doi:10.1016/j.cell.2020.11.025. ISSN 1097-4172. PMC 7674074. PMID 33278357.
  14. ^ Karki, Rajendra; Lee, SangJoon; Mall, Raghvendra; Pandian, Nagakannan; Wang, Yaqiu; Sharma, Bhesh Raj; Malireddi, Rk Subbarao; Yang, Dong; Trifkovic, Sanja; Steele, Jacob A.; Connelly, Jon P.; Vogel, Peter; Pruitt-Miller, Shondra M.; Webby, Richard; Kanneganti, Thirumala-Devi (2022-05-19). "ZBP1-dependent inflammatory cell death, PANoptosis, and cytokine storm disrupt IFN therapeutic efficacy during coronavirus infection". Science Immunology. 7 (74): eabo6294. doi:10.1126/sciimmunol.abo6294. ISSN 2470-9468. PMC 9161373. PMID 35587515.
  15. ^ Wang, Yaqiu; Pandian, Nagakannan; Han, Joo-Hui; Sundaram, Balamurugan; Lee, SangJoon; Karki, Rajendra; Guy, Clifford S.; Kanneganti, Thirumala-Devi (2022-09-28). "Single cell analysis of PANoptosome cell death complexes through an expansion microscopy method". Cellular and Molecular Life Sciences. 79 (10): 531. doi:10.1007/s00018-022-04564-z. ISSN 1420-9071. PMC 9545391. PMID 36169732.
  16. ^ Sundaram, Balamurugan; Pandian, Nagakannan; Mall, Raghvendra; Wang, Yaqiu; Sarkar, Roman; Kim, Hee Jin; Malireddi, R.K. Subbarao; Karki, Rajendra; Janke, Laura J.; Vogel, Peter; Kanneganti, Thirumala-Devi (June 2023). "NLRP12-PANoptosome activates PANoptosis and pathology in response to heme and PAMPs". Cell. 186 (13): 2783–2801.e20. doi:10.1016/j.cell.2023.05.005. PMC 10330523. PMID 37267949.
  17. ^ Zheng, Min; Karki, Rajendra; Vogel, Peter; Kanneganti, Thirumala-Devi (2020-04-30). "Caspase-6 Is a Key Regulator of Innate Immunity, Inflammasome Activation, and Host Defense". Cell. 181 (3): 674–687.e13. doi:10.1016/j.cell.2020.03.040. ISSN 1097-4172. PMC 7425208. PMID 32298652.
  18. ^ Christgen, Shelbi; Zheng, Min; Kesavardhana, Sannula; Karki, Rajendra; Malireddi, R. K. Subbarao; Banoth, Balaji; Place, David E.; Briard, Benoit; Sharma, Bhesh Raj; Tuladhar, Shraddha; Samir, Parimal; Burton, Amanda; Kanneganti, Thirumala-Devi (2020). "Identification of the PANoptosome: A Molecular Platform Triggering Pyroptosis, Apoptosis, and Necroptosis (PANoptosis)". Frontiers in Cellular and Infection Microbiology. 10: 237. doi:10.3389/fcimb.2020.00237. ISSN 2235-2988. PMC 7274033. PMID 32547960.
  19. ^ a b Lee, SangJoon; Karki, Rajendra; Wang, Yaqiu; Nguyen, Lam Nhat; Kalathur, Ravi C.; Kanneganti, Thirumala-Devi (September 2021). "AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence". Nature. 597 (7876): 415–419. Bibcode:2021Natur.597..415L. doi:10.1038/s41586-021-03875-8. ISSN 1476-4687. PMC 8603942. PMID 34471287.
  20. ^ Malireddi, R. K. Subbarao; Kesavardhana, Sannula; Karki, Rajendra; Kancharana, Balabhaskararao; Burton, Amanda R.; Kanneganti, Thirumala-Devi (2020-12-11). "RIPK1 Distinctly Regulates Yersinia-Induced Inflammatory Cell Death, PANoptosis". ImmunoHorizons. 4 (12): 789–796. doi:10.4049/immunohorizons.2000097. ISSN 2573-7732. PMC 7906112. PMID 33310881.
  21. ^ a b Sundaram, Balamurugan; Pandian, Nagakannan; Mall, Raghvendra; Wang, Yaqiu; Sarkar, Roman; Kim, Hee Jin; Malireddi, R. K. Subbarao; Karki, Rajendra; Janke, Laura J.; Vogel, Peter; Kanneganti, Thirumala-Devi (2023-06-22). "NLRP12-PANoptosome activates PANoptosis and pathology in response to heme and PAMPs". Cell. 186 (13): 2783–2801.e20. doi:10.1016/j.cell.2023.05.005. ISSN 1097-4172. PMC 10330523. PMID 37267949.
  22. ^ Sundaram, Balamurugan; Pandian, Nagakannan; Kim, Hee Jin; Abdelaal, Hadia M.; Mall, Raghvendra; Indari, Omkar; Sarkar, Roman; Tweedell, Rebecca E.; Alonzo, Emily Q.; Klein, Jonathon; Pruett-Miller, Shondra M.; Vogel, Peter; Kanneganti, Thirumala-Devi (June 2024). "NLRC5 senses NAD+ depletion, forming a PANoptosome and driving PANoptosis and inflammation". Cell. 187 (15): 4061–4077.e17. doi:10.1016/j.cell.2024.05.034. ISSN 0092-8674. PMC 11283362. PMID 38878777.
  23. ^ "St. Jude scientists solve decades long mystery of NLRC5 sensor function in cell death and disease". www.stjude.org. Retrieved 2024-06-18.
  24. ^ Man, Si Ming; Kanneganti, Thirumala-Devi (May 2015). "Regulation of inflammasome activation". Immunological Reviews. 265 (1): 6–21. doi:10.1111/imr.12296. ISSN 1600-065X. PMC 4400844. PMID 25879280.
  25. ^ Shi, Jianjin; Zhao, Yue; Wang, Kun; Shi, Xuyan; Wang, Yue; Huang, Huanwei; Zhuang, Yinghua; Cai, Tao; Wang, Fengchao; Shao, Feng (2015-10-29). "Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death". Nature. 526 (7575): 660–665. Bibcode:2015Natur.526..660S. doi:10.1038/nature15514. ISSN 1476-4687. PMID 26375003. S2CID 4407455.
  26. ^ He, Wan-ting; Wan, Haoqiang; Hu, Lichen; Chen, Pengda; Wang, Xin; Huang, Zhe; Yang, Zhang-Hua; Zhong, Chuan-Qi; Han, Jiahuai (December 2015). "Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion". Cell Research. 25 (12): 1285–1298. doi:10.1038/cr.2015.139. ISSN 1748-7838. PMC 4670995. PMID 26611636.
  27. ^ Aglietti, Robin A.; Estevez, Alberto; Gupta, Aaron; Ramirez, Monica Gonzalez; Liu, Peter S.; Kayagaki, Nobuhiko; Ciferri, Claudio; Dixit, Vishva M.; Dueber, Erin C. (2016-07-12). "GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes". Proceedings of the National Academy of Sciences of the United States of America. 113 (28): 7858–7863. Bibcode:2016PNAS..113.7858A. doi:10.1073/pnas.1607769113. ISSN 1091-6490. PMC 4948338. PMID 27339137.
  28. ^ Sborgi, Lorenzo; Rühl, Sebastian; Mulvihill, Estefania; Pipercevic, Joka; Heilig, Rosalie; Stahlberg, Henning; Farady, Christopher J.; Müller, Daniel J.; Broz, Petr; Hiller, Sebastian (2016-08-15). "GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death". The EMBO Journal. 35 (16): 1766–1778. doi:10.15252/embj.201694696. ISSN 1460-2075. PMC 5010048. PMID 27418190.
  29. ^ Kayagaki, Nobuhiko; Warming, Søren; Lamkanfi, Mohamed; Vande Walle, Lieselotte; Louie, Salina; Dong, Jennifer; Newton, Kim; Qu, Yan; Liu, Jinfeng; Heldens, Sherry; Zhang, Juan; Lee, Wyne P.; Roose-Girma, Merone; Dixit, Vishva M. (2011-10-16). "Non-canonical inflammasome activation targets caspase-11". Nature. 479 (7371): 117–121. Bibcode:2011Natur.479..117K. doi:10.1038/nature10558. ISSN 1476-4687. PMID 22002608. S2CID 2131385.
  30. ^ Martinon, Fabio; Burns, Kimberly; Tschopp, Jürg (July 2002). "The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta". Molecular Cell. 10 (2): 417–426. doi:10.1016/s1097-2765(02)00599-3. ISSN 1097-2765. PMID 12191486.
  31. ^ Zhao, Jie; Jitkaew, Siriporn; Cai, Zhenyu; Choksi, Swati; Li, Qiuning; Luo, Ji; Liu, Zheng-Gang (2012-04-03). "Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis". Proceedings of the National Academy of Sciences of the United States of America. 109 (14): 5322–5327. Bibcode:2012PNAS..109.5322Z. doi:10.1073/pnas.1200012109. ISSN 1091-6490. PMC 3325682. PMID 22421439.
  32. ^ Sun, Liming; Wang, Huayi; Wang, Zhigao; He, Sudan; Chen, She; Liao, Daohong; Wang, Lai; Yan, Jiacong; Liu, Weilong; Lei, Xiaoguang; Wang, Xiaodong (2012-01-20). "Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase". Cell. 148 (1–2): 213–227. doi:10.1016/j.cell.2011.11.031. ISSN 1097-4172. PMID 22265413.
  33. ^ Galluzzi, Lorenzo; Kepp, Oliver; Chan, Francis Ka-Ming; Kroemer, Guido (2017-01-24). "Necroptosis: Mechanisms and Relevance to Disease". Annual Review of Pathology. 12: 103–130. doi:10.1146/annurev-pathol-052016-100247. ISSN 1553-4014. PMC 5786374. PMID 27959630.
  34. ^ Dhuriya, Yogesh K.; Sharma, Divakar (2018-07-06). "Necroptosis: a regulated inflammatory mode of cell death". Journal of Neuroinflammation. 15 (1): 199. doi:10.1186/s12974-018-1235-0. ISSN 1742-2094. PMC 6035417. PMID 29980212.
  35. ^ Lukens, John R.; Gurung, Prajwal; Vogel, Peter; Johnson, Gordon R.; Carter, Robert A.; McGoldrick, Daniel J.; Bandi, Srinivasa Rao; Calabrese, Christopher R.; Vande Walle, Lieselotte; Lamkanfi, Mohamed; Kanneganti, Thirumala-Devi (2014-12-11). "Dietary modulation of the microbiome affects autoinflammatory disease". Nature. 516 (7530): 246–249. Bibcode:2014Natur.516..246L. doi:10.1038/nature13788. ISSN 1476-4687. PMC 4268032. PMID 25274309.
  36. ^ Gurung, Prajwal; Burton, Amanda; Kanneganti, Thirumala-Devi (2016-04-19). "NLRP3 inflammasome plays a redundant role with caspase 8 to promote IL-1β-mediated osteomyelitis". Proceedings of the National Academy of Sciences of the United States of America. 113 (16): 4452–4457. Bibcode:2016PNAS..113.4452G. doi:10.1073/pnas.1601636113. ISSN 1091-6490. PMC 4843439. PMID 27071119.
  37. ^ Kuriakose, Teneema; Man, Si Ming; Malireddi, R. K. Subbarao; Karki, Rajendra; Kesavardhana, Sannula; Place, David E.; Neale, Geoffrey; Vogel, Peter; Kanneganti, Thirumala-Devi (2016-08-05). "ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways". Science Immunology. 1 (2): aag2045. doi:10.1126/sciimmunol.aag2045. ISSN 2470-9468. PMC 5131924. PMID 27917412.
  38. ^ Christgen, Shelbi; Zheng, Min; Kesavardhana, Sannula; Karki, Rajendra; Malireddi, R. K. Subbarao; Banoth, Balaji; Place, David E.; Briard, Benoit; Sharma, Bhesh Raj; Tuladhar, Shraddha; Samir, Parimal; Burton, Amanda; Kanneganti, Thirumala-Devi (2020). "Identification of the PANoptosome: A Molecular Platform Triggering Pyroptosis, Apoptosis, and Necroptosis (PANoptosis)". Frontiers in Cellular and Infection Microbiology. 10: 237. doi:10.3389/fcimb.2020.00237. ISSN 2235-2988. PMC 7274033. PMID 32547960.
  39. ^ Malireddi, R. K. Subbarao; Kesavardhana, Sannula; Karki, Rajendra; Kancharana, Balabhaskararao; Burton, Amanda R.; Kanneganti, Thirumala-Devi (2020-12-11). "RIPK1 Distinctly Regulates Yersinia-Induced Inflammatory Cell Death, PANoptosis". ImmunoHorizons. 4 (12): 789–796. doi:10.4049/immunohorizons.2000097. ISSN 2573-7732. PMC 7906112. PMID 33310881.
  40. ^ Chen, Wen; Gullett, Jessica M.; Tweedell, Rebecca E.; Kanneganti, Thirumala-Devi (November 2023). "Innate immune inflammatory cell death: PANoptosis and PANoptosomes in host defense and disease". European Journal of Immunology. 53 (11): e2250235. doi:10.1002/eji.202250235. ISSN 1521-4141. PMC 10423303. PMID 36782083.
  41. ^ Malireddi, R. K. Subbarao; Bynigeri, Ratnakar R.; Mall, Raghvendra; Connelly, Jon P.; Pruett-Miller, Shondra M.; Kanneganti, Thirumala-Devi (2023-10-20). "Inflammatory cell death, PANoptosis, screen identifies host factors in coronavirus innate immune response as therapeutic targets". Communications Biology. 6 (1): 1071. doi:10.1038/s42003-023-05414-9. ISSN 2399-3642. PMC 10589293. PMID 37864059.
  42. ^ Jiang, Mingxia; Qi, Ling; Li, Lisha; Wu, Yiming; Song, Dongfeng; Li, Yanjing (2021-10-01). "Caspase-8: A key protein of cross-talk signal way in "PANoptosis" in cancer". International Journal of Cancer. 149 (7): 1408–1420. doi:10.1002/ijc.33698. ISSN 1097-0215. PMID 34028029.
  43. ^ Someda, Masataka; Kuroki, Shunsuke; Miyachi, Hitoshi; Tachibana, Makoto; Yonehara, Shin (May 2020). "Caspase-8, receptor-interacting protein kinase 1 (RIPK1), and RIPK3 regulate retinoic acid-induced cell differentiation and necroptosis". Cell Death and Differentiation. 27 (5): 1539–1553. doi:10.1038/s41418-019-0434-2. ISSN 1476-5403. PMC 7206185. PMID 31659279.
  44. ^ Rodriguez, Diego A.; Quarato, Giovanni; Liedmann, Swantje; Tummers, Bart; Zhang, Ting; Guy, Cliff; Crawford, Jeremy Chase; Palacios, Gustavo; Pelletier, Stephane; Kalkavan, Halime; Shaw, Jeremy J. P.; Fitzgerald, Patrick; Chen, Mark J.; Balachandran, Siddharth; Green, Douglas R. (2022-10-11). "Caspase-8 and FADD prevent spontaneous ZBP1 expression and necroptosis". Proceedings of the National Academy of Sciences of the United States of America. 119 (41): e2207240119. Bibcode:2022PNAS..11907240R. doi:10.1073/pnas.2207240119. ISSN 1091-6490. PMC 9565532. PMID 36191211.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Tubidy