Parabolic cylinder function

Coordinate surfaces of parabolic cylindrical coordinates. Parabolic cylinder functions occur when separation of variables is used on Laplace's equation in these coordinates
Plot of the parabolic cylinder function D v(z) with v=5 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D
Plot of the parabolic cylinder function D v(z) with v=5 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

In mathematics, the parabolic cylinder functions are special functions defined as solutions to the differential equation

(1)

This equation is found when the technique of separation of variables is used on Laplace's equation when expressed in parabolic cylindrical coordinates.

The above equation may be brought into two distinct forms (A) and (B) by completing the square and rescaling z, called H. F. Weber's equations:[1]

(A)

and

(B)

If is a solution, then so are

If is a solution of equation (A), then is a solution of (B), and, by symmetry, are also solutions of (B).

  1. ^ Cite error: The named reference Weber was invoked but never defined (see the help page).

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Tubidy