Point groups in three dimensions

Selected point groups in three dimensions

Involutional symmetry
Cs, (*)
[ ] =

Cyclic symmetry
Cnv, (*nn)
[n] =

Dihedral symmetry
Dnh, (*n22)
[n,2] =
Polyhedral group, [n,3], (*n32)

Tetrahedral symmetry
Td, (*332)
[3,3] =

Octahedral symmetry
Oh, (*432)
[4,3] =

Icosahedral symmetry
Ih, (*532)
[5,3] =

In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere. It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices. O(3) itself is a subgroup of the Euclidean group E(3) of all isometries.

Symmetry groups of geometric objects are isometry groups. Accordingly, analysis of isometry groups is analysis of possible symmetries. All isometries of a bounded (finite) 3D object have one or more common fixed points. We follow the usual convention by choosing the origin as one of them.

The symmetry group of an object is sometimes also called its full symmetry group, as opposed to its proper symmetry group, the intersection of its full symmetry group with E+(3), which consists of all direct isometries, i.e., isometries preserving orientation. For a bounded object, the proper symmetry group is called its rotation group. It is the intersection of its full symmetry group with SO(3), the full rotation group of the 3D space. The rotation group of a bounded object is equal to its full symmetry group if and only if the object is chiral.

The point groups that are generated purely by a finite set of reflection mirror planes passing through the same point are the finite Coxeter groups, represented by Coxeter notation.

The point groups in three dimensions are heavily used in chemistry, especially to describe the symmetries of a molecule and of molecular orbitals forming covalent bonds, and in this context they are also called molecular point groups.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by razib.in